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A B S T R A C T

This study presents a comprehensive validation of the Soil Moisture Active Passive (SMAP) mission Enhanced
Level-3 radiometer soil moisture (SM) product (Version 2) over 3 years from April 1, 2015 to March 31, 2018
using extensive ground measurements from sparse networks covering a range of physical and climatological
regimes. Using a common spatial resolution, soil moisture retrievals from the descending (6:00 AM) and as-
cending (6:00 PM) overpasses were assessed based on static conditions such as the climate zone, soil property
and land cover. Then validation considering performance with respect to dynamic attributes such as soil wetness,
vegetation density and land surface temperature was reported. Given the above six parameters are cross-cor-
related, the quality of the SMAP enhanced products was further evaluated based on pairwise factors.

Overall, higher accuracy was noted over zones where the soil organic carbon is low, the vegetation density is
relatively sparse, locations in the temperate and arid climate zones, and the mean LST is high. Results also
indicate that the descending (AM) and ascending (PM) products exhibit mean temporal correlation over the
ground stations equaling 0.667 and 0.651, and mean unbiased root mean square error (ubRMSE) equaling 0.055
and 0.054m3/m3 respectively which is close to the ubRMSE requirement of the SMAP mission, 0.04m3/m3.
While the ascending (PM) SM retrievals have been frequently excluded from applications due to its poor per-
formances reported form validation studies, these comparable performances between the two products suggest
that the ascending (PM) SM retrievals can be an additional data source. Based on the results here, it can be
concluded that there is room for improving the SMAP product especially in areas of the world with very dense
vegetation and average to low land surface temperatures.

1. Introduction

Soil moisture (SM) is an important component of the hydrological
cycle and land-atmosphere interactions (Chen et al., 2011; Koster et al.,
2004; Li et al., 2018). SM controls infiltration, surface overland flow,
and plays a vital role in partitioning energy fluxes (Beven and Fisher,
1996; Das and Paul, 2015). Due to its relevance, SM has been re-
cognized as an Essential Climate Variable (ECV) by the Global Climate
Observing System (GCOS) (GCOS, 2006). Accurate measurement of SM
hence has significant importance in a range of applications from flood
prediction to drought monitoring (Engda and Kelleners, 2016; S. Kim
et al., 2018).

Microwave remote sensors have been considered as an effective tool
to measure the globally spatial distribution of the soil water content
given its uniquely strong relationship with the dielectric constant of the
soil (Petropoulos et al., 2015). In addition to all-weather operations and
continuous measurements during day and night, passive microwave

sensors exhibit greater temporal resolution and lower impacts of sur-
face roughness disturbances while active microwave sensors show
higher quality in spatial resolution (Bertoldi et al., 2014; Kornelsen and
Coulibaly, 2013; Ulaby et al., 1986).

To incorporate advantages of both active and passive microwave
remote sensors (Entekhabi et al., 2010a), the Soil Moisture Active
Passive (SMAP) satellite mission was launched on January 31, 2015, by
the National Aeronautics and Space Administration (NASA) with a 3-
day global coverage, the L-band radiometer and L-band radar onboard
are dedicated to collect and provide the high-resolution mapping of
global SM and the freeze-thaw state of soil (Chan et al., 2016;
Srivastava et al., 2016). Due to the low frequency at L-band (1.41 GHz),
negligible atmospheric effects and the deeper penetrating capability
over the vegetation canopy occur, leading to a higher accuracy of the
signals received (Kerr et al., 2016; Wigneron et al., 2017). Additionally,
use of the anti-interference hardware and kurtosis-based algorithms
help reduce the radio frequency interference (RFI) caused by the
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anthropogenic activities (Piepmeier et al., 2014). Owing to an irre-
coverable malfunction that happened to the radar in July 2015, the
SMAP data released have been derived from brightness temperatures
collected by the L-band radiometer alone.

The SMAP products have been widely validated and/or applied
since the relevant datasets were released in April 2015 (Burgin et al.,
2017; Chan et al., 2018; Chan et al., 2016; Chen et al., 2017; Colliander
et al., 2017a; Colliander et al., 2017b; Colliander et al., 2018; Jackson
et al., 2018; S. Kim et al., 2018; Pan et al., 2016; Zhang et al., 2017).
The related validation studies can be classified into five categories ac-
cording to their reference dataset sources. These are post-launch field
campaigns, comparisons with other remote-sensed products, use of core
validation sites, use of sparse ground networks, and comparisons with
land surface model simulations. Recently, the SM retrievals from the
latest version of SMAP Level-2 (L2) SM products and SMAP enhanced
L2 SM products spanning from April 1, 2015, to March 31, 2018 have
been separately compared against the ground-point observations from
the core validation sites along with the sparse network to assess the
SMAP retrieval performance via statistical metrics (Jackson et al.,
2018). Zhang et al. (2017) have evaluated the accuracy of SMAP Level-
4 (L4) surface SM retrievals and Advanced Microwave Scanning
Radiometer 2 (AMSR2) Level-3 (L3) descending products (April 2015 to
March 2016) using in-situ measurements from two American mon-
itoring sites. Colliander et al. (2017a) have conducted pairwise vali-
dations between SMAP Level-1 (L1) and L2 retrievals and ground
measurements within the zones of the post-launch field campaign in the
United States applying the airborne Passive/Active L-band Sensor
(PALS) as a means of assessing the product where SM spatial distribu-
tions are highly uneven. H. Kim et al. (2018) have validated three sa-
tellite products with the period from April 2015 to December 2016,
including the SMAP Enhanced L2 descending products, Advanced
Scatterometers (ASCAT) surface SM products and AMSR2 Land Para-
meter Retrieval Model (LPRM) datasets using model-based SM as
ground truth allowing assessment under different vegetation fractions
and land cover conditions. Colliander et al. (2018) have compared the
performance of the SMAP enhanced L2 descending products with a
9 km spatial resolution processed by Backus-Gilbert interpolation with
using ground observations over 9 km and 33 km domains from the core
validation sites.

It must be noted that past validation studies have not focused on the
performance of SMAP products under varied physical and climatolo-
gical conditions given the relatively short study periods that have been
available. To address this, our study aims to evaluate the performance
of the recently released SMAP Enhanced L3 passive SM product
(Version 2) for the first 3 years of the mission (April 1, 2015– March 31,
2018) and ascertain reasons for variations across a range of conditions
including climate zone, soil property, land cover, soil wetness, vege-
tation density and land surface temperature. These selections have been
based on the tau-omega model (Mo et al., 1982) which forms the the-
oretical basis to retrieve soil moisture from passive microwave and is
also being used for the SMAP L2 passive microwave soil moisture al-
gorithm. In addition to soil wetness itself, soil property, land surface
temperature, and vegetation water content serve as inputs in the

process of generating the SMAP L3 products (Entekhabi et al., 2014),
and land cover is associated with several significant parameters for the
SM retrievals even though it is not a direct input for the tau-omega
model (Kim, 2013). Notably, the climate zone is not directly associated
with the parameters used in SM retrieval algorithms and has hence been
chosen as an indicator considering the role climatology plays in re-
trieval accuracy. Globally distributed ground measurement data from
the sparse network are used in this validation. In addition, consistent
with the validation of L2 products by Chan et al. (2018), descending
and ascending L3 products have also been compared. Given the above
six parameters are cross-correlated, the quality of the SMAP enhanced
products has been further evaluated based on the pairwise factors.

This paper is structured as follows. Section 2 briefly presents the
relevant datasets developed and the procedures used to pre-process the
data in this study. In Section 3, the assessment metrics adopted are
described. This is followed by a presentation and a detailed discussion
of the results (Section 4). Finally, conclusions are presented in Section
5.

2. Data and data processing

Datasets used in this study over the 3-year study period (April 1,
2015– March 31, 2018) are summarised in Table 1. These include the
SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil
Moisture dataset (SPL3SMP_E, Version 2), globally distributed ground
measurements obtained from the International Soil Moisture Network
(ISMN) (Dorigo et al., 2011) as the reference data, the volumetric soil
moisture content in the top layer (0–0.05m) (SFMC) of the Modern-Era
Retrospective Analysis for Research and Applications Land version 2
reanalysis (MERRA-2) (Global Modeling and Assimilation Office
(GMAO), 2015), and six physical and climatological indicators, climate
zone, soil property, land cover, soil wetness, vegetation density and
land surface temperature, which affect soil moisture retrieval sig-
nificantly (De Lannoy et al., 2014; Entekhabi et al., 2014; Kim, 2013;
Kim et al., 2015; Schmugge, 1980). In addition to this, in cases where
there exist two or more ground stations in a 0.1°× 0.1° pixel, MERRA-2
SFMC has been additionally used for representing areal representa-
tiveness of each station in the grid cell, details for which are provided in
the following Section 2.1.2.

Of the six physical and climatological conditions, the first three
conditions, climate zone (CZ), soil property (SP) and land cover (LC),
are considered as static conditions and results are presented in Section
4.2. The remaining indicators (soil wetness (SW), vegetation density
(VD) and land surface temperature (LST)) present dynamic conditions
which vary with the soil moisture being estimated, results being pre-
sented in Section 4.3. It should be noted that a geographic coordination
with spatial resolution of 0.1°× 0.1° pixels was commonly used
throughout this study by resampling all data having various spatial
resolutions using bilinear interpolation unless otherwise stated.

Table 1
Summary of data used in this study.

Data Data source and/or product name Resolution (temporal/spatial) Unit

Satellite soil moisture SMAP enhanced L3 soil moisture products (SPL3SMP_E, Version 2) Daily/9 km m3/m3

In-situ soil moisture ISMN Hourly/point m3/m3

Reanalysis soil moisture MERRA-2 top soil layer soil moisture consent SFMC (M2T1NXLND) Hourly (time-averaged)/0.5° × 0.625° m3/m3

Climate zone Peel et al. (2007) −/0.25° –
Soil property SMAP Microwave Radiative Transfer Model: Soil class (SPL4SMLM) −/9 km –
Land cover MODIS (MCD12Q1) Yearly/0.05° –
Vegetation SMAP Vegetation Water Content (SPL3SMP_E) Daily/9 km kg/m2

Land surface temperature SMAP Land Surface Temperature (SPL3SMP_E) Daily/9 km K
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2.1. Soil moisture data

2.1.1. SMAP soil moisture
The recently released SMAP Enhanced L3 Radiometer Global Daily

9 km EASE-Grid Soil Moisture (SPL3SMP_E, Version 2), hereinafter re-
ferred to as SMAP L3, was selected in the assessments reported next.
The SMAP L3 product is a daily global product that presents volumetric
surface SM (0–5 cm, m3/m3) and brightness temperature in Kelvin (K)
retrieved by the SMAP L-band radiometer (1.41 GHz) on the 9 km
global cylindrical Equal-Area Scalable Earth (EASE) Grid 2.0 (Brodzik
et al., 2012). This enhanced L3 product is a daily composite of SMAP
enhanced L2 half-orbit products, where the L3 ascending and des-
cending products are derived separately by only considering the en-
hanced L2 SM products acquired (Chan, 2016; O'Neill et al., 2016a).
The SMAP enhanced L2 SM product is derived from the SMAP En-
hanced L1 Gridded Brightness Temperature Product (L1CTB_E) (posted
at 9 km grid cell) based on Backus-Gilbert optimal interpolation tech-
nique (Chan et al., 2018; Colliander et al., 2018; O'Neill et al., 2016a).

Comparing with the previous version of the SMAP enhanced pro-
ducts, three changes were introduced in the Version 2 product (Jackson
et al., 2018). In addition to the water body correction and recalibration
of the L1 brightness temperature products, the formulation used to
calculate the effective soil temperatures has also been modified to re-
duce the mean differences between the satellite SM retrievals and in-
situ SM measurements. As a result, it has been shown that the Version 2
product significantly improved in terms of bias. Although the nominal
spatial extent of the SMAP radiometer is 36 km×36 km and the SMAP
enhanced product are posted on the 9 km pixel, the contributing do-
main of the SMAP enhanced product is 33 km×33 km. (Chan et al.,
2018; Chan et al., 2016; Colliander et al., 2018; O'Neill et al., 2016a).
This SMAP enhanced L3 product came from the NASA National Snow
and Ice Data Center Distributed Active Archive Center (NSIDC DAAC,
http://nsidc.org/data/smap/smap-data.html).

While the descending (6 AM local time) SM retrievals are commonly
adopted by researchers due to their relatively higher quality than the
ascending (6 PM local time) data because of more favorable thermal
equilibrium conditions between vegetation and near surface soil (De
Jeu et al., 2008), both products were used in the assessments reported
here. To ensure stable assessments, only the SMAP datasets not affected
by the following filters were used (Bindlish et al., 2015; Choudhury
et al., 1982; O'Neill et al., 2016b): (1) grids where the open water
fraction is larger than 10%; (2) grids where the frozen condition
(LST < 273.15 K) fraction is> 10%; (3) highly dense vegetation areas
(vegetation water content> 5 kg/m2); (4) not recommended by the
SMAP retrieval quality flag.

2.1.2. In-situ soil moisture
To effectively assess the SMAP L3 product, in-situ observations from

the ISMN were used (Dorigo et al., 2011). The ISMN, maintained by the
Vienna University of Technology, is a centralized data system that
collects and disseminates globally harmonized in-situ SM measure-
ments from diverse validation campaigns and operational networks,
and the ISMN currently (October 2018) consists of 2439 ground stations
from 59 networks mainly distributed over the United States and Europe.
In addition, the ISMN data are freely available for all users through the
data access website (https://ismn.geo.tuwien.ac.at/data-access/) and
these data have been extensively applied in a large number of valida-
tion studies (Dorigo et al., 2017; H. Kim et al., 2018; Ochsner et al.,
2013).

It should be noted that the in-situ stations used for evaluating the
performance of the SMAP L3 product are mostly from the sparse net-
works which often have only one station distributed over one satellite
footprint (Chan et al., 2018; Jackson et al., 2018). Even though one
station can continuously provide reliable surface SM measurements
(0–5 cm), these observations at a point are hardly able to reflect the SM
variations for such a large area covered by the SMAP radiometer scans

are significant. Additionally, the spatial mismatch between the satellite
products and the sparse network can affect the ability of the approach
to detect the performance differences leading to a large amount of
noise. Given that, it can be expected that the quality of the SM retrievals
evaluated using the ground observations from the sparse network is not
as accurate and reliable as that assessed using the in-situ measurements
from the core validation sites (CVSs). Based on the statistical metrics,
however, the results of the performance evaluation of the SMAP en-
hanced products using the sparse networks showed up slightly inferior
but very similar to the CVS results where the average unbiased root
mean square error is slightly lower than 0.04m3/m3 (Jackson et al.,
2018). More importantly, sparse networks involve a large number of
stations with the coverage of diverse environments so that validating
the SM retrievals using sparse networks could be more aligned with the
objective of this study to evaluate the performance of SMAP SM pro-
ducts over varied landscapes and climates.

There exist systematic differences between the satellite and ground
data resulting from the spatial representativeness, different measure-
ment depths, uncertainties in the land surface parameterization through
the soil moisture retrieval algorithm and differences in sensitivity
against rainfall events at the same pixel (Colliander et al., 2017a; Crow
et al., 2012; Parinussa et al., 2011). To minimize these systematic dif-
ferences while keeping data quality acceptable, the following filtering
criteria (Dorigo et al., 2015) were applied for the in-situ SM data from
the whole operating networks: (1) only stations that measure SM at a
shallowest depth<10 cm were selected; (2) the stations for which to-
pographic complexity (TC) and wetland fraction (WF) are smaller than
10%, were chosen, the TC and WF data being available from the Eur-
opean Space Agency Climate Change Initiative (ESA CCI) (Chung et al.,
2018); (3) the data identified as ‘good’ in the quality flags of the ISMN
were adopted (Dorigo et al., 2013); (4) for any pixel, the in-situ SM
measured closest to the AM and PM scan time of SMAP were retained;
(5) when two or more stations locate within a grid cell, only one station
is considered as the most representative for the pixel. This is because
taking account of all datasets within one pixel in validation would lead
to an unevenly high weight for the accuracy assessment of SM retrievals
in that pixel in comparison to the grid with one station (Dorigo et al.,
2015). Therefore, following the method used in Dorigo et al. (2015),
the areal representativeness of the station depends upon the average of
the correlation between the in-situ SM and the SMAP enhanced L3 SM
data and the correlation between the in-situ SM and the MERRA-2
SFMC data. The stations with the highest mean correlation values for
each pixel can be retained. Notably, those selected stations do not ne-
cessarily have the highest correlation with the SMAP enhanced L3 SM
data. Here, daily values at each grid cell were selected from the hourly
time series of the MERRA-2 SFMC data, which are temporally closest to
the SMAP scan time over the grid on the day. Furthermore, to ensure
statistical robustness, stations having at least 100 paired observations
were used in this study. Consequently, only 191 ground stations from
13 networks were retained and used out of 1276 stations in 21 net-
works, which are mostly concentrated over the United States and
Europe as presented in Fig. 1 and Table 2.

2.2. Static conditions

Static conditions refer to those changing relatively slow allowing
assumptions of stationarity to be imposed over the study period. Here,
these present assessments for climate zone (CZ), soil property (SP) and
land cover (LC). Assessments were performed by forming a range of
statistical metrics (see Section 3) using the SMAP L3 products and
ground measurements at the station locations presented in Fig. 1. Given
the global distribution of metrics and global classification maps for the
static conditions (Table 1), grid cells were grouped according their
static conditions separately. Further details for each classification are
described in the following Subsections 2.2.1 to 2.2.3.
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2.2.1. Climate zone
In this study, the updated Koppen–Geiger climate classification

(Peel et al., 2007) was used for assessing how the climate zone (CZ)
affects the performance of the SM retrievals. The updated climate
classification delineates a global distribution of different climatic types
based on monthly temperature and precipitation station records
(1901–2000) from the Global Historical Climatology Network (GHCN)
version 2.0 dataset. The climate types in this map fall into five primary
types (i.e. Tropical, Arid, Temperate, Cold, and Polar) and 30 possible
sub-classes. This study only used the five primary climate types for the
assessments. It should be noted that 18 out of 19 stations in the CTP-
SMTMN network (Yang et al., 2013) are distributed over the Tibetan
Plateau (> 4400m above sea level) and belong to Polar climate zone
(ET, Polar-Tundra, temperature of the hottest month>0 °C) by the
updated Koppen–Geiger climate classification (https://people.eng.
unimelb.edu.au/mpeel/koppen.html).

2.2.2. Soil property
This study used an updated soil texture map suggested by De

Lannoy et al. (2014) for assessing the SMAP performance with relation
to soil property (SP). This map is based on the Harmonized World Soil
Databank version 1.21 (HWSD) (Nachtergaele and Batjes, 2012) and
the high-resolution State Soil Geographic (STATSGO2) (NRCS Soil
Survey Staff, 2012), with the former covering most of the world and the
latter containing information for the United States. Given the high

sensitivity of soil dielectric constants with soil moisture and the docu-
mented importance of organic matter content in the SM estimation (Kay
et al., 1997; Letts et al., 2000; Manns et al., 2017), the soil texture map
consists of four primary categories depending on amounts of organic
carbon and is divided into 253 subclasses with associated hydraulic
properties.

As the soil texture map has been also used for generating the SMAP
L4 Surface and Root Zone Soil Moisture data product, the dataset is
available as one of SMAP products (SPL4SMLM) and can be obtained
from the NSIDC DAAC as well. Notably, the soil classification used here
only involved the four categories by the content of organic carbon,
termed as OC1 to OC4 as described in Table 3.

2.2.3. Land cover
In this study, a Moderate Resolution Imaging Spectroradiometer

(MODIS)-derived land cover (LC) map was used for assessing effects of
LC on the performance of the SMAP L3 product. This yearly MODIS LC
product is named as MCD12C1 (Version 051) (Friedl et al., 2010) and
its spatial resolution is 0.05°× 0.05°. Among the yearly datasets from
2001 to 2012, the LC map from 2012 was selected which is freely
available on the NASA Earthdata website (https://earthdata.nasa.gov/
). The MCD12C1 product incorporates the 17-class International Geo-
sphere Biosphere Program (IGBP) that are simplified as 6 primary
classes except for Permanent wetlands, Permanent snow and ice, and
Water (Table 4). This study only used the 6 primary LC classes for the
assessments.

2.3. Dynamic conditions

Dynamic assessments were performed for conditions that vary in
time, which are soil wetness (SW), vegetation density (VD) and land
surface temperature (LST). In this study, cross-correlation analyses
were implemented by investigating how the SM performance is affected
by one of the three dynamic factors which is conditioned by CZ. By
doing so, effects on the SM retrieval by the dynamic factors may be
more reliably describe. This kind of research can also be extended to
consider more than two factors which may be helpful to interpret the

Fig. 1. The global distribution of 191 ground stations used in this study. The stations with diamond marks distributed over Alaska, and Northern Europe have high
soil organic carbon>8.72% (De Lannoy et al., 2014) (see Section 2.2.2).

Table 2
Summary of ground stations used for study.

Network Country No. of
stations

Deptha (cm) References

BIEBRZA-S-1 Poland 2 5.00 http://www.igik.edu.pl/
en

COSMOS USA 1 10.00 Zreda et al. (2008)
CTP-SMTMN China 19 5.00 Yang et al. (2013)
FMI Finland 3 5.00 http://fmiarc.fmi.fi/
HOBE Denmark 3 5.00 Bircher et al. (2012)
REMEDHUS Spain 11 5.00 Sanchez et al. (2012)
RISMA Canada 8 5.00 Ojo et al. (2015)
RSMN Romania 17 5.00 http://assimo.

meteoromania.ro
SCAN USA 59 5.08 http://www.wcc.nrcs.

usda.gov/
SMOSMANIA France 10 5.00 Albergel et al. (2008)
SNOTEL USA 20 5.08 Leavesley et al. (2008)
SOILSCAPE USA 4 5.00 Moghaddam et al. (2010)
USCRN USA 34 5.00 Bell et al. (2013)
Total 191

a Referred to station static variables from the ISMN.

Table 3
Primary soil classes by organic carbon contents (De Lannoy et al., 2014).

Primary classes Organic carbon (OC, %) Subclass number

OC1 0≤OC < 0.40 1–84
OC2 0.40≤OC < 0.64 85–168
OC3 0.64≤OC < 8.72 169–252
OC4 OC≥ 8.72 253

R. Zhang et al. Remote Sensing of Environment 223 (2019) 82–94

85

https://people.eng.unimelb.edu.au/mpeel/koppen.html
https://people.eng.unimelb.edu.au/mpeel/koppen.html
https://earthdata.nasa.gov
http://www.igik.edu.pl/en
http://www.igik.edu.pl/en
http://fmiarc.fmi.fi
http://assimo.meteoromania.ro
http://assimo.meteoromania.ro
http://www.wcc.nrcs.usda.gov
http://www.wcc.nrcs.usda.gov


results in greater depth, however, this was not considered here to
maintain simplicity of presentation and interpretation. Instead, more
assessment results conditioned by the SP and LC are provided in
Supplementary Information for further consideration.

For the assessments, the following procedures were adopted: (1) a
dataset at each ground station was prepared, including time series of in-
situ measurements (first column), the SMAP L3 retrievals (second
column), one of the dynamic conditions (third column), and the climate
zone identifiers (fourth column), (2) the 4-column datasets over all
stations were sequentially appended to each other, creating an in-
tegrated 4-column dataset, (3) the integrated 4-column dataset was
separated by one of the climate zone identifiers in the fourth column,
(4) the separated 4-column dataset was sorted in an ascending order
along the selected dynamic condition in the third column, (5) the sorted
4-column dataset was divided into 10 segments by deciles of the se-
lected dynamic condition, (6) the four statistical metrics described in
Section 3 were sequentially calculated along with the 10 data segments.
Then these results were reported in Section 4 as line charts for the
descending (AM) and ascending (PM) products. The three dynamic
conditions used are briefly described through the following Sections
2.3.1 to 2.3.3.

2.3.1. Soil wetness
As mentioned in Section 2.1.2, the ground observations closest to

SMAP scanning time were retained. These in-situ measurements over
the 191 stations were used for the soil wetness condition through the
data processing procedure (1) to (6) described in the previous section.

2.3.2. Vegetation density
The vegetation water content (VWC) data, which is one of ancillary

datasets of the SMAP L3 products, was used for representing the density
of vegetation over the area. The VWC, expressed in units of kg/m2,
assists in accurately estimating SM in the SMAP retrieval algorithm. As
the VWC cannot be directly measured from currently available sensors,
a secondary-derivation method based upon Hunt et al. (1996) is used,
which takes the measurable and highly correlated parameter, the
Normalized Difference Vegetation Index (NDVI), and the LC variability
into consideration (Chan et al., 2013).

2.3.3. Land surface temperature
The SMAP land surface temperature (LST) ancillary dataset (SMAP

Algorithm Development Team and SMAP Science Team, 2015), referred
to the globally effective soil temperature product that presents the
average soil temperatures within the surface layers (0–5 cm), was se-
lected here. This ancillary dataset relies on the NASA Goddard Earth
Observing System Model, Version 5 forward process system (GEOS-5)

soil temperature output products from NASA Goddard Modeling and
Assimilation Office (GMAO).

3. Assessment metrics

Four conventional statistical metrics were applied for the validation,
which are bias, root mean square error (RMSE), unbiased root mean
square error (ubRMSE) and time series correlation (R) (Entekhabi et al.,
2010b). If the surface SM products measured by the ground stations and
estimated by the satellite were denoted as θtrue and θest (vectors), re-
spectively, the bias, RMSE, ubRMSE and R can be written as Eqs. (1) to
(4) where E […] presents the arithmetic mean of the data.

= −bias E[θ ] E[θ ]est true (1)

= −RMSE E[(θ θ ) ]est ture
2 (2)

= −ubRMSE RMSE bias2 2 (3)

=

− −R E[(θ E[θ ])(θ E[θ ])]
σ σ

est est true true

est true (4)

4. Results and discussion

In this section, assessment results of the SMAP Enhanced L3 SM
product are presented through the following subsections using box
plots, line charts and tables. Section 4.1 includes overall performance of
the AM and PM retrievals, and Sections 4.2 and 4.3 show assessment
results using the static and dynamic conditions respectively.

The blue and red colors in Figs. 2 to 8 indicate the descending (AM)
and ascending (PM) product results respectively. Arithmetic mean (m)
and standard deviation (std) values of the four metrics (Section 3) for
each assessment are presented in Tables 5 to 8 as a form of “m ± std”
for simple comparisons between the AM and PM products along with
the static conditions. Additionally, p values from paired-sample t-tests
between the calculated metrics of the AM and PM products are pre-
sented to check statistical significances for rejecting a null hypothesis
that mean values of the two sets of metrics are same. Simply stated, it is
harder for the null hypothesis to be rejected with larger p values.

4.1. Overall performance of AM and PM products

The box plots in Fig. 2 and Table 5 present overall performance
results for the AM and PM products in terms of the four metrics.

Overall performances of the AM and PM products can be sum-
marised as follows. First, the bias and RMSE of the AM data are similar
with those of the PM data as presented in Fig. 2a–b and as per the large
p values in Table 5. The slightly positive bias is consistent with the
evaluation results using sparse networks for the L2 SMAP Enhanced
(L2SMP_E) Version 2 data products, but mean bias for the products
using CVSs and the SMOS products using sparse networks were gen-
erally presented as negative (Al-Yaari et al., 2017; Jackson et al., 2018).
Second, as shown in Fig. 2c, with the ubRMSEs, removing the biases
from the RMSEs bring the results closer to the SMAP mission require-
ment, 0.04m3/m3. Lastly, the R of the AM data is imperceptibly better
than that of the PM data with a p value of 0.028 (Fig. 2d). Generally, the
AM product shows better performance than the PM product consistent
with the previous validation results (Chan, 2016; Chan et al., 2018).
Given the thermal equilibrium between vegetation canopy and land
surface in the morning are better matched to the assumptions in SM
retrieval algorithms, the higher quality of AM retrieval is in line with
exiting research (Chan et al., 2018; De Jeu et al., 2008; O'Neill et al.,
2016b). However, it should be noted that the differences in the per-
formances between the AM and PM products are not so contrasted and
similarly, the PM retrievals without significant errors as expected have
also been found in the early results from the Soil Moisture and Ocean

Table 4
IGBP land cover classification (Friedl et al., 2010).

IGBP classes Specific classification Primary classification

1 Evergreen needleleaf forest Forest
2 Deciduous needleleaf forest
3 Evergreen broadleaf forest
4 Deciduous broadleaf forest
5 Mixed forests
6 Closed shrublands Shrublands
7 Open shrublands
8 Woody savannas Woodlands
9 Savannas
10 Grasslands Grasslands
11 Permanent wetlands /
12 Croplands Croplands
14 Cropland/natural vegetation mosaics
13 Urban and built-up land Unvegetated
16 Barren or sparsely vegetated
15 Permanent snow and ice /
17 Water
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Salinity (SMOS) products (Jackson et al., 2012; O'Neill et al., 2016b).
Therefore, the PM product may also be valuable for various applications
together with the AM product.

4.2. Assessment results for static conditions

4.2.1. Climate zones
Each validation metric has been assigned to a primary climate class

as shown in Fig. 3 and Table 5 where the tropical area was excluded

Fig. 2. Boxplots showing performance metrics for the AM and PM products in terms of (a) bias, (b) RMSE, (c) ubRMSE and (d) R. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)

Fig. 3. Performance metrics for primary climate zones in terms of (a) bias, (b) RMSE, (c) ubRMSE and (d) R. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)
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from the box plots.
In general, it is also shown that the performance of AM product is

slightly better than the PM product in the arid, temperate and cold
zones, but differences in mean values of the metrics are not so statis-
tically significant with large p values at some cases as presented in
Table 6. However, it should be recognized that the 18 stations

distributed over Polar zones (see Section 2.2.1) generally presents
better performances in the PM product than those of the AM product
while other climate zones tend to be opposite, which may be because of
positive effects on the SM retrieval by mitigated freeze conditions re-
sulting from higher temperature in the afternoon. This result suggests
the performance of the AM product is not always better than that of the

Fig. 4. SM assessments by four primary soil classes in terms of (a) bias, (b) RMSE, (c) ubRMSE and (d) R. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Fig. 5. Assessment results for the primary land covers in terms of (a) bias, (b) RMSE, (c) ubRMSE and (d) R. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)
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PM product and more comprehensive consideration is necessary for the
data selection based on physical and climatological conditions of the
site.

As shown in Fig. 3a, the arid zones show underestimated biases, and
those of the temperate zones are relatively closer to zero for both
products. Fig. 3b–c show the RMSE and ubRMSE where the SM retrieval
outperforms in the arid zones compared to others, which is possibly
related to the lower vegetation attenuation. In case of R (Fig. 3d),
highest R values are presented in the temperate and polar zones, but the
cold zones show significant degradations compared to others. It has
been noted that the brightness temperatures detected would decrease
with increasing soil moisture or decreasing vegetation density
(Monerris et al., 2003). When both soil moisture and vegetation density
increase or decrease, the opposite effects can thereby occur on radiation
signals leading to relatively larger differences between the SM retrievals
and the ground measurements and these scenarios actually occur in
different seasons (Gruhier et al., 2008). Therefore, the seasonally cor-
related trends of soil moisture and vegetation density may partly ac-
count for the relatively lower accuracy reported for the cold zones.

4.2.2. Soil property
Fig. 4 and Table 7 present assessment results with the four primary

soil classes by organic carbon contents described in Section 2.2.2.
Generally, as presented by large p values in Table 7, except for a few

cases, differences in mean values of the metrics for the AM and PM
products are not so statistically significant along with the four primary
soil classes, OC1-OC4. In addition, there are generally declining trends
in the performances, except for R, with increasing soil organic carbon
contents as shown in Fig. 4b–d. It is highlighted that the SMAP L3

products in OC4 class are highly degraded for all metrics compared to
the cases of OC1 to OC3. Especially, the R values for OC4 are only
around 0.2 with markedly lower reliability given the wide range of the
boxes, with similar observations holding for the other metrics assessed
as well. Even though the finding on OC4 cannot be concluded due to the
lack of samples (8 stations), some reasons for this result can be formed.
Firstly, it has been revealed that the increase in soil OC would decrease
the soil bulk density and increase the fraction of bound water influen-
cing the soil permittivity (Bircher et al., 2016; Jin et al., 2017; Jones
et al., 2002; Jong et al., 1983; Malicki et al., 1996). According to
Mironov and Bobrov (2003), the L-band refractive index for the agri-
cultural soil samples (~0.16m3/m3) containing 6.6% humus is lower
than that of the soil samples (~0.15m3/m3) with 0.6% humus which
means the SM dielectric constants proportional to the soil reflectiveness
are reduced as the increase of Soil OC. However, this relevant impact
was not fully considered in Mironov et al. (2009) which is now applied
to retrieve the version2 SMAP SM (Jackson et al., 2018) partially
leading to the mis-match between the remotely-sensed products and the
in-situ measurements. Based on the relative metrics here (ubRMSE and
R), the current Mironov dielectric model used in SMAP SM retrieval
may be not suitable for the zones with OC-rich soil (Jin et al., 2017). In
addition, it should be noted that most stations of OC4 are located in the
high latitude areas where the SM retrievals are difficult due to the effect
of soil freezing and thaw process (Al-Yaari et al., 2014). Therefore, the
poor R may be mainly attributed to that reason, given the surrounding
stations with similar latitudes to those OC4 stations also present rela-
tively poor performance in the specific validation. In the previous va-
lidation studies for the SMOS products, R values in high-latitude zones
are also far lower than that in the other zones (Al-Yaari et al., 2014).

Fig. 6. Performance of SM retrievals with SW conditioned by CZ in terms of (a) bias (b) RMSE (c) ubRMSE and (d) R. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

Fig. 7. Performance of SM retrievals with VD conditioned by CZ in terms of (a) bias (b) RMSE (c) ubRMSE and (d) R. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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Furthermore, three OC4 stations are from the FMI network (see Fig. 1
and Table 2) where the SM retrievals may also be affected by the pre-
sence of marshland or water bodies in addition to the Soil OC and high
latitude (Al-Yaari et al., 2014).

4.2.3. Land cover
Fig. 5 and Table 8 present validation metrics for the six primary

land cover classes. When considering the results for the forest and un-
vegetated regions, it is to be kept in mind that the number of stations
for these land cover types are not enough (3 and 2 respectively).

In the grassland region, statistically significant differences in mean
values of the metrics between the AM and PM products where small p
values in Table 8. Apart from the forest and unvegetated regions due to
lack of stations, negative biases (i.e. underestimation) are generally
observed in the shrubland and grassland whereas results for the
woodland and cropland tend to be positive (i.e. overestimation)
(Fig. 5a), and the grassland generally presents lower RMSE than others
(Fig. 5b). In terms of ubRMSE (Fig. 5c), the cropland shows relatively
poorer performance than others which is consistent with the recent
validation study for Version 2 SMAP product (Jackson et al., 2018) and
possibly due to conspicuous seasonal variations in Cropland by either
harvest or bare soil periods (Kim, 2013). Fig. 5d presents R values
which are clearly different between the shrubland and grassland re-
gions mainly distributed over the arid, semi-arid and temperate zones
(Geruo et al., 2017). In fact, these differences in R values over the
shrubland and grassland have been also observed in previous validation
studies for the SMAP enhanced products using in-situ measurements
from sparse networks (Chan et al., 2018; Jackson et al., 2018) where R
values in the shrubland are significantly lower than those of the
grassland. This could result from variabilities in native vegetation types
for both areas, with the grassland considered more homogeneous
compared to the shrubland (Neave and Abrahams, 2002). In addition,
the sensitivity of vegetation in Shrubland to soil variations decreases
whereas the grassland becomes more sensitive to the alterations in soil
moisture conditions during drought periods (Geruo et al., 2017). While
data was limited, overall performance for Unvegetated regions is rela-
tively high which has been also reported from previous validation
studies for passive L-band-derived SM products (Al-Yaari et al., 2014;
Jackson et al., 2018).

4.3. Assessment results for dynamic factors conditioned by climate zones

In this section, assessment results with the dynamic factors, SW, VD
and LST (see Section 2.3 for details), conditioned by the four primary
climate zones (i.e. Arid, Temperate, Cold and Polar) are presented.
Table 9 presents the total number of observations for each class used for
calculating the statistical metrics presented through Figs. 6 to 8. Note
that the results from the single station in the tropical region were ex-
cluded from the following result presentation.

4.3.1. Soil wetness
Fig. 6 presents the evaluation results of the SM retrievals' accuracy

with SW conditioned by CZ.
First, the biases (Fig. 6a) in these four zones commonly reduce from

positive to negative values with increasing SW. Here, the polar zone
presents lower reduction rates and more distinguishable trends between
the AM and PM products than other zones. In case of RMSE (Fig. 6b),
the trends lines for the arid, temperate and cold zones show convex
shapes for which stationary points with minimum RMSE values range
from 0.1(for arid) to 0.2 m3/m3 (for temperate and cold). In the polar
zone, RMSE values decrease with increasing SW but tends to be stable
for SW>0.1m3/m3. In addition, the PM product in the polar zone
generally shows lower RMSE than the AM product, which in line with
the findings in Section 4.2.1. While the ubRMSE values, as presented in
Fig. 6c, are stratified as low to high following with the arid, temperate
and cold zones, those of the polar zone are significantly fluctuated with
SW variability. Lastly, as shown in Fig. 6d, whereas R values in the arid
zone generally increase with increasing SW, those for other zones are
increased by the changing SW. Like the case of ubRMSE, the polar zone
presents highly fluctuating patterns of R.

4.3.2. Vegetation density
The performance of SM retrievals with VD conditioned by CZ are

shown in Fig. 7.
Overall, as presented in Fig. 7, while VD (i.e. mean VWC) values

over the temperate and cold zones generally range 0.2 to 4.4 kg/m2,
those of the arid and polar zones are distributed in a narrower range, 0
to 2 kg/m2. Biases (Fig. 7a) for the temperate and cold gradually in-
crease from negative (dry bias, underestimation) to positive (wet bias,

Fig. 8. Performance of SM retrievals with LST conditioned by CZ in terms of (a) bias (b) RMSE (c) ubRMSE and (d) R. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

Table 5
Summarised performance metrics for the AM and PM products.

Item No. of stations Bias RMSE ubRMSE R

AM 191 0.001 ± 0.076 0.086 ± 0.041 0.055 ± 0.018 0.667 ± 0.171
PM 191 0.001 ± 0.076 0.085 ± 0.041 0.054 ± 0.018 0.651 ± 0.209
p value 0.763 0.264 0.002 0.028
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overestimation) values with increasing VD. However, Arid generally
presents negative values with a small variability and those of the polar
zone expeditiously increase over the narrow ranges of VD. These trends
of biases with varied VD are similarly propagated into the cases of
RMSE and ubRMSE as shown in Fig. 7b and c. In other words, RMSE
and ubRMSE over the four CZs broadly increase with increasing VD in
which the cold zone presents the most significant increases. In terms of
R (Fig. 7d), the arid, temperate and cold zones generally present de-
clining R values with increasing VD even though there are high vari-
abilities whereas the polar zone tends to present higher R values with
higher VD.

4.3.3. Land surface temperature
The performance of the SMAP with LST conditioned by CZ are

presented in Fig. 8.
As shown in Fig. 8, compared to the cases of SW and VD, the per-

formance trends with LST changes are clearly contrasted in the AM and
PM products, in which the AM product has 5 to 6 K shorter LST ranges
in the upper limits than the PM product. In addition, as LST increase,
the performances of both products tend to be better in general. Here, it
is to be noted that the AM product presents better performances than
the PM product over the LST ranges in the arid, temperate and cold
zones, but opposite trends (i.e. PM is better than AM) are observed in
the polar zone having much shorter LST ranges than others. With re-
spect to the bias (Fig. 8a), the SM retrievals in the arid and cold zones
are inclined to be underestimated (negative) and overestimated (posi-
tive) respectively whereas those of the temperate gradually increase
from negative to positive across zero around 295 K, and the biases in
the polar zone sharply increase with increasing LST from 280 to 295 K
(285 K for AM). As shown in Fig. 8b–c, RMSE and ubRMSE generally

decrease with increasing LST where the cold zone shows clearly steeper
trends than others, and the arid and temperate zones generally show
better performances than the cold zone with RMSE and ubRMSE values.
Similarly, R values tend to increase with increasing LST in which the
arid and temperate present higher R values than others, and the cold
and polar zones show precipitous inclines in their R values.

4.4. Caveats and follow-up studies

Despite the variation in performance across the six physical and
climatological, it should be noted that the results here were constrained
due to the spatiotemporal extent of the data that was available to this
study. First, the ground stations from the sparse networks covering the
first three-year of the SMAP observations were highly concentrated on
the United States and Europe, and therefore performance gaps for the
SM retrievals in some conditions cannot be fully explained due to lack
of stations. More effective and globally distributed in-situ measure-
ments can help improve the assessment accuracy further. Second, al-
though one ground station from the sparse network is likely to reflect
the temporal variability of the SM state within that grid, the spatial
representativeness for the areal SM and the physical and climatological
conditions used in this study in a 0.1°× 0.1° pixel cannot be achieved
by in-situ measurements from a single station. Moreover, the mis-match
between the SM retrievals and the in-situ measurements from the sparse
networks can also lead to more errors in the assessment results.
Although we applied a strict filtering processes (Section 2.1.2), it
should be noted that possibly remaining systematic differences among
the datasets are somewhat arbitrary and can likely lead to unreliable
assessment results, especially for metrics such as bias and RMSE.
Therefore, the performance of SMAP products assessed using the sparse

Table 6
Summarised performance metrics of the AM and PM products by primary climate zones.

Climate zones No. of stations Item Bias RMSE ubRMSE R

Tropical 1 AM −0.049 0.070 0.051 0.770
PM −0.067 0.084 0.050 0.783
p value – – – –

Arid 58 AM −0.015 ± 0.056 0.073 ± 0.029 0.050 ± 0.017 0.700 ± 0.123
PM −0.020 ± 0.057 0.072 ± 0.032 0.048 ± 0.017 0.693 ± 0.132
p value 0.013 0.693 0.088 0.399

Temperate 35 AM 0.001 ± 0.061 0.078 ± 0.027 0.053 ± 0.019 0.750 ± 0.136
PM 0.005 ± 0.064 0.079 ± 0.029 0.052 ± 0.019 0.731 ± 0.147
p value 0.037 0.251 0.503 0.017

Cold 79 AM 0.011 ± 0.095 0.100 ± 0.051 0.056 ± 0.017 0.590 ± 0.184
PM 0.015 ± 0.093 0.099 ± 0.050 0.056 ± 0.017 0.547 ± 0.245
p value 0.177 0.380 0.396 0.005

Polar 18 AM 0.016 ± 0.058 0.088 ± 0.029 0.069 ± 0.018 0.733 ± 0.178
PM 0.000 ± 0.058 0.081 ± 0.031 0.064 ± 0.016 0.805 ± 0.116
p value 0.061 0.028 0.001 0.005

Total 191

Table 7
Summarised performance metrics of the AM and PM products by four primary soil classes.

Soil classes No. of stations Item Bias RMSE ubRMSE R

OC1 14 AM 0.026 ± 0.055 0.063 ± 0.039 0.041 ± 0.015 0.674 ± 0.143
PM 0.022 ± 0.056 0.063 ± 0.038 0.041 ± 0.015 0.645 ± 0.162
p value 0.115 0.800 0.973 0.123

OC2 25 AM 0.020 ± 0.054 0.071 ± 0.025 0.046 ± 0.014 0.691 ± 0.126
PM 0.016 ± 0.058 0.071 ± 0.028 0.046 ± 0.015 0.675 ± 0.142
p value 0.052 0.866 0.710 0.230

OC3 144 AM 0.000 ± 0.069 0.086 ± 0.033 0.058 ± 0.018 0.678 ± 0.168
PM −0.002 ± 0.071 0.085 ± 0.034 0.056 ± 0.017 0.675 ± 0.188
p value 0.221 0.296 0.000 0.616

OC4 8 AM −0.080 ± 0.181 0.183 ± 0.076 0.059 ± 0.016 0.389 ± 0.174
PM −0.040 ± 0.188 0.177 ± 0.077 0.062 ± 0.018 0.154 ± 0.208
p value 0.221 0.231 0.415 0.060

Total 191
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network cannot fully reflect their accuracy even though it is likely to
follow similar pattern to the evaluation metrics using the CVSs based on
the previous validation results (Chan et al., 2018; Jackson et al., 2018).
Hence, the relative metrics such as ubRMSE and R have a higher weight
in the quality evaluation in this study.

It should be also recognized that there may be complex inter-
dependencies among the rough six physical and climatological condi-
tions considered in this study and that there may be other important
factors significantly affecting the SM retrieval that are not investigated
here (i.e. surface roughness, soil fraction, water fraction and so on).
Many other sub-classifications could not be considered due to the
limited ground coverage that was available. In this regard, this study
examines the sensitivity of the SM product performance for a few given
conditions, rather than considering the actual combination of condi-
tions. Considering the difficulty of completely investigating the inter-
dependency among all possible conditions related to the SM retrieval,
this paper makes some meaningful steps towards improving the SMAP
L3 product. The authors hope that this paper will provide clues on the
improvements and guidelines for users.

5. Conclusions

This study comprehensively evaluated the 3-year version 2 SMAP
Enhanced L3 Radiometer soil moisture product (Version 2) by com-
paring with in-situ measurements from 191 stations distributed over
various physical and climatological conditions across the world. Based
on four assessment metrics (i.e. bias, RMSE, ubRMSE and R), the fol-
lowing findings can be reported.

1. The descending (AM) product was generally found to be better than
the ascending (PM) product, without significant differences between
the two products being present. This supports the argument that the
PM product can be used for various applications together with the
AM product, unlike the approach that has been adopted in previous
missions (Section 4.1). However, 18 stations distributed over Polar
zones generally presents higher R values in the PM product which is
opposite to the general recognition suggesting more comprehensive

consideration is necessary for selecting the SMAP SM data based on
site conditions (Section 4.2.1).

2. The SMAP product generally showed better performances in Arid
and Temperate zones than in Cold zones (Sections 4.2 and 4.3).

3. Declining performances were observed with increasing soil organic
carbon (OC) contents. Especially, significant degradations for all
metrics were observed in OC4 class where soil organic carbon
is> 8.74%. Reasons for this should be carefully evaluated and re-
trieval algorithms modified to improve accuracy for this class.
Consideration needs to be given for any applications of the retrieved
products over such zones as well (Section 4.2.2).

4. Of the two dominant land cover types, grassland and cropland, the
former generally showed better performances (Section 4.2.3).

5. In the assessments with dynamic factors conditioned by the climate
zones (Section 4.3), better performances were found in arid fol-
lowed by temperate and finally cold zones at lower SW and VD, and
higher LST. The temperate zone generally presented gradual tran-
sitions in the performances with changes in the dynamic factors
while those of the arid and cold zones are relatively dull. Mean-
while, the polar zones can be characterized by 1) better perfor-
mances in the PM product, 2) high fluctuations in the performances
with changes in the dynamic factors, and 3) steeper trends than
other climate zones.

6. In general, the performance of the SM retrievals from the dataset are
fairly good in terms of bias and temporal correlation against the in-
situ measurements, while also being mostly better than satellite
products derived from previous missions (Cui et al., 2018; H. Kim
et al., 2018).

In the absence of the continuously long-term ground measurements
across the world, the performance of surface SM retrievals cannot be
evaluated thoroughly. However, the results here offer an assessment
that maximizes the use of the existing relevant data and can serve as an
appropriate reference for further investigations as more data becomes
available.
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Table 8
Summarised performance metrics of the AM and PM products by primary land cover classes.

Land cover classes No. of stations Item Bias RMSE ubRMSE R

Forest 3 AM −0.011 ± 0.069 0.084 ± 0.018 0.059 ± 0.024 0.663 ± 0.079
PM −0.011 ± 0.075 0.084 ± 0.025 0.057 ± 0.025 0.706 ± 0.068
p value 0.966 0.886 0.033 0.268

Shrubland 12 AM −0.031 ± 0.101 0.096 ± 0.062 0.045 ± 0.018 0.483 ± 0.235
PM −0.009 ± 0.099 0.093 ± 0.055 0.046 ± 0.018 0.266 ± 0.326
p value 0.305 0.540 0.738 0.013

Woodland 10 AM 0.094 ± 0.071 0.109 ± 0.061 0.040 ± 0.012 0.709 ± 0.232
PM 0.102 ± 0.073 0.117 ± 0.061 0.042 ± 0.014 0.655 ± 0.291
p value 0.127 0.017 0.500 0.048

Grassland 88 AM −0.013 ± 0.055 0.077 ± 0.030 0.057 ± 0.020 0.703 ± 0.145
PM −0.018 ± 0.054 0.075 ± 0.031 0.054 ± 0.019 0.724 ± 0.139
p value 0.025 0.057 0.000 0.004

Cropland 76 AM 0.010 ± 0.085 0.094 ± 0.043 0.057 ± 0.015 0.647 ± 0.164
PM 0.010 ± 0.085 0.093 ± 0.044 0.056 ± 0.015 0.623 ± 0.176
p value 0.905 0.528 0.218 0.000

Unvegetated 2 AM 0.045 ± 0.015 0.055 ± 0.022 0.031 ± 0.016 0.767 ± 0.060
PM 0.037 ± 0.018 0.050 ± 0.024 0.034 ± 0.016 0.693 ± 0.115
p value 0.168 0.246 0.061 0.305

Total 191

Table 9
Number of observations for four primary climate zone classes.

Product Arid Temperate Cold Polar Total

AM 21,061 11,592 24,283 2178 59,114
PM 21,453 11,680 25,816 2504 61,453
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2019.01.015.
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