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Soil moisture plays an important role in the hydrologic water cycle. Relative to in-situ

soil moisture measurements, remote sensing has been the only means of monitoring

global scale soil moisture in near real-time over the past 40 years. Among these, soil

moisture products from radiometry sensors operating at L-band, e.g., SMAP, SMOS,

and SMOS-IC, are theoretically established to be more advantageous than previous

C/X-band products. However, little effort has been made to investigate the inter-product

differences of L-band soil moisture retrievals and provide insights into the optimal use

of these products. In this regard, this study aims to identify the relative strengths

and weaknesses of three L-band soil moisture products across diverse climate zones

and land covers at the global scale using triple collocation analysis. Results show

that SMOS-IC exhibits significantly improved soil moisture estimation skills, relative to

the original SMOS product. This demonstrates the paramount importance of retrieval

algorithm development in improving global soil moisture estimates—given both SMOS-IC

and SMOS are using the same L-band brightness temperature information. Relative to

SMOS-IC, SMAP is superior across 69%of global land surface in terms of error variances.

However, SMOS-IC tends to outperform SMAP over temperate/arid regions including in

the east of North America, South America, western Africa, northern China, and central

Australia. Additionally, considerable performance degradation of all the L-band data

products is observed over unvegetated areas. This may suggest that improving soil

moisture retrieval accuracy over arid and semi-arid regions should be a key priority for

future L-band soil moisture development, and model-based (e.g., GLDAS) soil moisture

products appear to provide more accurate soil moisture estimates over these regions.

Keywords: soil moisture, L-band, triple collocation, SMAP, SMOS, SMOS-IC

INTRODUCTION

Soil moisture (SM) plays a critical role in hydrological and land-atmosphere coupling and therefore
an accurate knowledge of its spatiotemporal dynamics is therefore essential for understanding
related hydro-climatic processes (Koster et al., 2004; Brocca et al., 2014; Ford et al., 2014; Crow et al.,
2018). Relative to in-situ observations, satellite remote sensing provides soil moisture retrievals with
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a global coverage, which makes it more suitable for large-
scale hydrological and climate analyses (Massari et al.,
2015; McColl et al., 2017; Koster et al., 2019). However,
considerable uncertainties remain in SM remotely sensed
retrievals (Karthikeyan et al., 2017; Beck et al., 2021), which
forms the focus of the study reported here.

Satellite remote sensing of soil moisture is generally
characterized by sensor types (i.e., active and passive) and
microwave bands such as X-, C-, and L-bands used for the
retrievals. Whereas, active microwave sensors transmit pulses
of microwave energy to the land surface and measure the
backscatter coefficient over vegetated regions (Mo et al., 1984;
Wagner et al., 1999), the passive sensors observe microwave
emission at various frequencies from the Earth’s surface (Njoku
and Kong, 1977; Jackson et al., 1982; Mo et al., 1982). The latter
(i.e., passive) largely occupies the history of SM remote sensing
compared to the active sensors (Kim et al., 2019). The first passive
sensor for retrieving SM was SMMR (note that all undefined
acronyms and abbreviations used in this study are listed in the
Appendix) onboard the Nimbus-7 satellite launched in the late
1970s, which could observe brightness temperatures through
multiple channels including C-band (6.6 GHz). Since then, the
genealogy of passive microwave sensors has been expanded to X-
(de Jeu et al., 2008; Fujii et al., 2009; Parinussa et al., 2014, 2015;
Kang et al., 2020) and L-bands (Kerr et al., 2001; Entekhabi et al.,
2010; Wigneron et al., 2021) over the last four decades.

While the L-band SM products (i.e., SMAP, SMOS-IC, and
SMOS) are relatively new, recent validation studies using in-situ
data as reference have reported that the L-band SM products
generally outperform X- and C-band retrievals. For example,
Cui et al. (2018) showed that SMAP and SMOS are consistently
better than AMSR2 and FengYun-3B over two dense networks
of ground stations. Ma et al. (2019) presented L-band SM
products (SMAP and SMOS-IC) are generally better than a X-
band derived product (AMSR2-LPRM) using global ground-
based observations distributed over varied climate zones. Zhang
et al. (2021) showed that the temporal correlation of SMAP and
SMOS-IC against references is better than that of ASCAT except
for tropical regions. This is because L-band is theoretically more
sensitive to SM dynamics and has a better penetration capacity
through vegetation cover (Jackson, 1993; Wigneron et al., 1995;
Njoku and Entekhabi, 1996).

Due to the point-footprint scale differences, traditional
in-situ-based validation is subject to significant spatial
representative error, and dense soil moisture networks that
are representative of footprint scale soil moisture dynamics are
limited (Miralles et al., 2010; Crow et al., 2012; Chen et al., 2016).
Triple collocation (TC) is a large-scale validation technique by
which error variances and data-truth correlation coefficients of
three independent datasets can be estimated without a reference
(i.e., truth; Stoffelen, 1998; McColl et al., 2014). TC has been
extensively used and tested for validating various remote sensing-
and model-based SM products (Scipal et al., 2010; Miyaoka et al.,
2017; Chen et al., 2018; Zhang et al., 2021). However, the three
L-band SM products (i.e., SMAP, SMOS-IC, and SMOS) have
not been simultaneously considered and compared through
triple collocation analyses (TCA). This is mainly due to efforts

not to violate the assumption of zero error-correlation, a key
assumption implicit within TC (Gruber et al., 2016b). Generally,
to fulfill the assumption of zero error cross-correlation, it is
common to define the triplet used in TC with independent
datasets as possible (e.g., active + passive + model). In this
aspect, products resulting from the same sensor type and/or
same band tend to be not preferred in TC. Consequently,
simultaneous consideration on the three L-band products for TC
has received relatively little attention, creating a need to fill this
gap for data users and developers to identify product strengths
and weaknesses. As shown in a large number of validation
studies mentioned above, a SM product is not absolutely superior
in all spaces and times because of retrieval conditions present
(e.g., RFI and vegetation density; Zhou et al., 2019) and limited
parameterizations of physical conditions. Consequently, various
products tend to exhibit complementarity in their performances.
In addition, the performance complementarity represented by
error variances and error covariances play an important role in
merging multiple datasets for achieving improvements in the
merged dataset (Bates and Granger, 1969; Gruber et al., 2017;
Kim S. et al., 2020).

Our contributions through this study are as follows. First, we
compared anomaly time series of the three L-band SM products
in terms of error variance and squared data-truth Pearson
correlation coefficients via TC analyses using three separate data
triplet combinations. Second, the assessments for various climatic
and land cover conditions were classified to further investigate
their performance in space. We believe our TC-based validation
study can provide usage guidelines and directions for further
improvements of the L-band soil moisture products. The rest
of this paper is structured as follows. In section Materials and
Methods, we first describe the datasets used in this study and their
data preprocessing. The triple collocation analyses along with
associated data triplets are also detailed. This is followed by the
results and discussion in section Results and Discussion and we
conclude in section Summary and Conclusions with a summary
of key findings drawn.

MATERIALS AND METHODS

Data
The comparison of the three passive L-band soil moisture
datasets was conducted for a 5-year period fromApril 1st, 2015 to
March 31st, 2020. Table 1 shows a summary of main differences
of the three retrieval algorithms, SMAP, SMOS-IC, and SMOS.
The summary is based on the key references, including O’Neill
et al. (2016) for SMAP; Fernandez-Moran et al. (2017) and
Wigneron et al. (2021) for SMOS-IC; Kerr et al. (2012), Al Bitar
et al. (2017), and Wigneron et al. (2017) for SMOS, through
which readers can refer to further details. In addition to the three
passive L-band soil moisture datasets compared, two additional
SM products, ASCAT and the surface soil moisture of GLDAS-
CLS, were used for constructing TC triplets as independent
SM inputs. The details of the datasets used for this study are
summarized in Table 2.

In order to filter out unreliable satellite SM retrievals, the
following preprocessing is applied. For SMAP, we use pixels
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TABLE 1 | Summary of key differences of SMAP, SMOS-IC, and SMOS retrieval algorithms.

Algorithm SMAP (SCA-V) SMOS-IC (V2) SMOS (Multi-Orbit L3)

Incidence angle 40 Multi-angular Multi-angular

Physical

temperature

· Ts = Tc = Teff derived from GMAO GEOS-5

soil temperature products at two layers

(0–10 cm, 10–20 cm), using Choudhury et al.

(1982)

· Different parameters for AM/PM and land

cover types (C = 0.246 for AM, 1.000 for PM;

K = 1.000 for dense vegetation, 1.020

for others)

· Teff derived from ECMWF soil temperature

products at two layers (1–7 cm, 28–100 cm), using

Choudhury et al. (1982)

· C = f (SM, soil type)

· Tc derived from ECMWF skin temperature

· Teff derived from ECMWF soil

temperature products at two layers

(1–7 cm, 28–100 cm), using Choudhury

et al. (1982)

· C = f (SM, soil type)

· Tc derived from ECMWF

skin temperature

Surface roughness

and land cover

· Wang and Choudhury (1981) model for

rough-surface reflectivity

· Parameters varied by land cover types

· Land cover classes: IGBP

· Calibrated roughness parameters for Wang and

Choudhury (1981) model varied by land cover types

· Consideration of pixel as homogeneous

independent from ancillary datasets

· Land cover classes: IGBP

· Roughness parameters for Wang and

Choudhury (1981) model varied by land

cover types

· Consideration of pixel heterogeneity

based on ancillary datasets and angular

antenna patterns

· Land cover classes: IGBP

Vegetation · VWC estimated from NDVI for foliage, and LAI

for stem, and adjusted by land cover types

· τ to be estimated as function of VWC and b

(from land cover -based look up table)

· γ: function of τ and θ

· Non-linear VWC Correction applied

· ω from land cover-based look up table

· τ jointly retrieved with soil moisture through

inversion of L-MEB model (Wigneron et al., 2007)

· Calibrated ω varied by land cover types

· Initialization of τ using yearly average value from

previous runs

· Continuous improvements in initialization maps of τ

and data filtering (V2)

· First order modeling approach (2-Stream) instead

of the zero-order τ - ω model (V2)

· Development of multi-temporal approach

considering temporally slowly changing L-VOD (V2)

· τ constrained by temporal

autocorrelation function (for L3)

· τ jointly retrieved with soil moisture

through inversion of L-MEB model

(Wigneron et al., 2007)

· ω varied by land cover (0 for low

vegetation, 0.06–0.08 for forests)

· Initialization of τ using MODIS LAI

Dielectric mixing

model

Mironov et al. (2009) Mironov et al. (2009) Mironov et al. (2009)

b, vegetation parameter; h, roughness parameter; Tc, vegetation canopy temperature; Teff , effective surface temperature; Ts, soil surface temperature; γ, one-way transmissivity of

canopy; θ , incidence angle; τ , vegetation optical depth; ω, single scattering albedo.

where the percentages of the open water area were <10%;
vegetation water content (VWC) <5 kg/m2; the fraction of the
frozen condition (land surface temperature <273.15K) <10%;
recommended by the retrieval quality flag (Das et al., 2013). For
SMOS-IC, the scene flag (SF) and the root-mean-square error of
brightness temperature (TB-RMSE) are used for the filtering, by
which we masked pixels with SF >1 or TB-RMSE >8K. Here,
the former indicates complex topography and conditions with
frozen, urbanization, ice, and water bodies; the latter implies
being under considerable radio frequency interference (RFI). For
SMOS, we use pixels where the RFI probability was <25%; SM
data quality index <0.06; global quality index <10 according
to the recommendations in Bengoa and Zapata (2009) and Al-
Yaari et al. (2014). For ASCAT, pixels are used if they have
<10% probability of snow, frozen ground, and 50% of estimated
retrieval error as recommended by Chen et al. (2018). Note that
SM data from the morning overpass of the satellites were used by
considering that morning is more favorable for retrieving passive
soil moisture (de Jeu et al., 2008). Then, the SM products with
various spatial resolutions were resampled to the 36 km Equal-
Area Scalable Earth Grid version 2.0 (EASE-Grid 2.0) (Brodzik
et al., 2012) using the nearest neighbor.

Finally, the TCA results are evaluated by various climate
zone (CZ) and land cover (LC) classes. In this study, we use
the five primary CZ classes from the updated Köppen–Geiger

climate classification presented by Peel et al. (2007): tropical, arid,
temperate, cold, and polar regions; the six classes from MODIS
MCD12C1 (Friedl et al., 2010): forest, shrublands, woodlands,
grasslands, croplands, and unvegetated regions.

Triple Collocation Analysis
Triple Collocation (TC) has been instrumental in estimating
error variances and correlation coefficients against the unknown
truth through an inter-comparison of three independent
products (Stoffelen, 1998; McColl et al., 2014). It is known that
TC robustly works for anomaly time series (Miralles et al., 2010).
This is because the mean seasonal cycle of geophysical data has a
limited degree of freedom, and consequently, climatology errors
across different datasets aremore likely to be cross-correlated and
violate the TC assumption, i.e., zero error-correlation (Draper
et al., 2013). Thus, this study aims to compare the soil moisture
datasets based on TC analyses (TCA) using their anomaly
times series.

To obtain the anomaly time series from the raw data, we
first calculated the seasonal cycle at each pixel by applying a 31-
day moving average (−15 to 15 days) to the raw data, allowing
estimation of the anomaly time series by subtracting the seasonal
cycle out. For a triplet of zero-mean anomaly time series xi (i = 1,
2, and 3), each data is linearly related to the truth (t) and consists
of two additive terms: xi = αit + εi, where αi is the multiplicative
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TABLE 2 | Summary of datasets used in this study.

Product name Resolutions (temporal/spatial) Details References

L-band SM data SMAP Level 3 Radiometer V7 Daily/overpass

(ascend/descend)

at 6 p.m./a.m. (local time)

36 km

EASEv2

Passive L-band (1.41 GHz) O’Neill et al., 2018

SMOS-IC Level 3 V2

(SMOS developed by INRA and

CESBIO)

Daily/overpass

(ascend/descend)

at 6 a.m./p.m. (local time)

25 km

EASEv2

Passive L-band (1.41 GHz) Li et al., 2020a,b, 2021;

Wigneron et al., 2021

SMOS Level 3

(CATDS-PDC L3SM Filtered−1

day global map of soil moisture

values from SMOS satellite)

Daily/overpass

(ascend/descend)

at 6 a.m./p.m. (local time)

25 km

EASEv2

Passive L-band (1.41 GHz) CATDS, 2016; Al Bitar et al.,

2017

Other SM data ASCAT Level 2 V5

(SM index product H103 on

board MetOp-B)

Daily/overpass

(ascend/descend)

at 9:30 p.m./a.m. (local

time)

0.25◦ Active C-band (5.3 GHz)

radar backscatter

Naeimi et al., 2009

GLDAS-CLS L4 V2.2 Daily 0.25◦ Surface soil moisture

(0–2 cm)

Li et al., 2020

Ancillary data Climate zone Updated

Köppen–Geiger climate

classification

– 0.25◦ 5 primary classes: tropical,

arid, temperate, cold, and

polar regions

Peel et al., 2007

Land cover MODIS MCD12C1

V1

Yearly (2015) 0.05◦ 6 primary classes: forest,

shrublands, woodlands,

grasslands, croplands, and

unvegetated regions

Friedl et al., 2010

bias term, and εi is random error with zero mean. To remove the
differences in the dynamic ranges of the datasets, the original data
xi is scaled against a reference xr as

xi
∗

=
αr

αi
xi. (1)

Here, the scaling factor αr/αi is estimated as

αr

αi
=

xr
Txk

xiTxk
, (2)

where xk is another product which is independent from both xr
and xi (Yilmaz and Crow, 2013). Hereafter, the products used
in this study represent scaled data as per (1) and (2), and the
asterisk ∗ is dropped for clarity and succinctness. The three
triplets used for the TCA in this study are composed of the
“ASCAT+ GLDAS-CLS+L-band product (i.e., SMAP, SMOS-
IC, or SMOS),” and GLDAS-CLS is used as the reference xr in
common for the scaling. For scaling ASCAT, a L-band product is
denoted as xj, and vice versa.

For the scaled products, variances (σi
2) and covariances (σij,

i 6= j) can be simplified as Equations (3) and (4) based on the
assumption of truth-error orthogonality, meaning covariances
between the truth and the errors are zero.

σi
2 = αi

2σt
2 + σεi

2 (3)

σij = αiαjσt
2 + σεiεj , (4)

where σt is the standard deviation of t. By further adopting the
assumption of zero error cross-correlation, i.e., σεiεj = 0, the

simultaneous (Equations 3, 4) for i= 1, 2, and 3 can be solved for
error variances e2 and the squared data-truth Pearson correlation
coefficients ρ2. Accordingly, the column vectors e2 and ρ2 can be
represented as

e2 =
[

σ1
2 −

σ12σ13
σ23

σ2
2 −

σ12σ23
σ13

σ3
2 −

σ13σ23
σ12

]T
(5)

ρ
2 =

[

σ12σ13
σ12σ23

σ12σ23
σ22σ13

σ13σ23
σ32σ12

]T
. (6)

e2 and ρ
2 for each L-band product are separately estimated

from each triplet as mentioned above. For comparison, we also
estimate those for GLDAS-CLS by averaging the results from the
three triplets presented in Figures 3, 4. Note only pixels with
50 paired observations at the minimum are used to ensure the
statistical robustness of the estimated e2 and ρ2.

RESULTS AND DISCUSSION

In this section, we first present global maps of TCA estimated
error variances e2 and squared data-truth correlation coefficients
ρ2 for different products. Then, we further stratify their relative
performances results by climate and land cover conditions
described in section Data.

Global Distributions of Error Variances and
Data-Truth Correlation
It is noticeable from the above results that SMOS-IC (top
panel of Figure 1) is considerably improved compared to
SMOS (middle). The advances in SMOS-IC result from
improvements in parameterization and data filtering in the
retrieval algorithm (Li et al., 2020b; Wigneron et al., 2021).
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FIGURE 1 | TCA results for error variances e2 (Left) and squared Pearson correlation coefficients ρ2 (Right) for SMOS-IC (Top), SMOS (Middle), and SMAP

(Bottom). Here the gray background on land indicates regions masked by the data preprocessing described in section Data.

As presented in the middle row of Figure 1, SMOS exhibits
considerably disparate patterns and substantially degraded
performances compared to the other two L-band products.
The areas of performance degradation for SMOS broadly
appear all over the world, and comparable performances with
SMOS-IC (middle) and SMAP (bottom) and are observed
over only a few regions such as the western part of North
America, the south ends of South America and South
Africa, and East of Australia. The superiority of SMAP for
both metrics is generally observed over most global land
grid-cells (bottom), and SMOS-IC ranks next and presents
similar spatial patterns of both statistics (top). While the
performance degradation of SMAP and SMOS-IC mainly
appears over arid regions including northern Africa, Northeast
China, and Central Australia, SMOS-IC shows the aspect of
somewhat supplementing SMAP over east of North America,
South America, western Africa, northern China, and central
Australia. This complementarity of their performances is well-
illustrated in Figure 2, of which implication in terms of

data improvement will be discussed in section Summary
and Conclusions.

Previous studies in recent years are in line with the
above-mentioned findings. Fernandez-Moran et al. (2017)
demonstrated that SMOS-IC is considerably improved compared
to SMOS against a reanalysis soil moisture data. Chen et al. (2018)
presented that SMAP generally outperforms SMOS in terms of
data-truth correlation through TCA. Zhang et al. (2021) showed
a similar spatial pattern of TC-based correlation coefficients of
SMAP and SMOS-IC.

For further evaluation, we also present rank maps in Figure 2,
where a dataset is presented at each grid cell if it has the smallest
(largest) e2 (ρ2) among the three products.

The three-way comparison in Figure 2 clearly shows that
SMAP surpasses the others over considerable portions of the
world, 69% for e2 and 65% for ρ2. The remaining parts are
mostly filled with SMOS-IC, 29% for e2 and 34% for ρ2, but the
domain of SMOS is at ignorable levels for both metrics. Despite
the general superiority of SMAP over the globe, the advantage
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FIGURE 2 | Global rank maps showing soil moisture datasets, SMAP (red), SMOS-IC (green), and SMOS (blue), presenting the lowest error variances e2 (Left) and

the highest squared Pearson correlation coefficients ρ2 (Right). Here, the numerical values in parentheses represent proportions in percentages that the three soil

moisture datasets show the lowest (highest) e2 (ρ2). Here the gray background on land indicates regions masked by the data preprocessing described in section Data.

of SMOS-IC is apparent over east of North America, South
America, western Africa, northern China, and central Australia.
Figure A1 shows another three-way comparison among SMAP,
SMOS-IC, and ASCAT to investigate coincidence with existing
results. With half of the pixels representing the superiority of
SMAP, ASCAT’s strengths over Central Asia, northeast America,
and southeast America are prominent in both for e2 and ρ2.
In case of SMOS-IC, competitive strengths over Australia are
noticeable. These patterns are also observable from Kim H. et al.
(2020) in which the TCA was implemented using the triplet of
SMAP, SMOS-IC, and ASCAT.

Results Across Different Climate Zones
and Land Covers
In this section, we categorize the results presented in Figures 1,
2 by the five primary CZ classes (tropical, arid, temperate,
cold, and polar regions), and the six primary LC classes (forest,
shrublands, woodlands, grasslands, croplands, and unvegetated
regions), by which possible reasons can be identified with
relation to the differences in their retrieval algorithms (Table 1).
The categorized results are then presented as boxplots in
Figure 3. Here, the metrics of GLDAS-CLS are also included for
comparison as averages of the results from the three data triplets.
Note that the findings to be presented later do not reflect the
performance of the L-band products in dense vegetation because
dense vegetation areas were masked through the filtering criteria
described in section Data (e.g., VWC <5 kg/m2).

Although its performance tends to vary across different
climate and land cover classes for both metrics, SMAP generally
outperforms the other products. To be more explicit in the
comparison, we sequentially carried out product-wise one-
tailed t-tests to assess if the mean of e2 (ρ2) for SMAP is
smaller (greater) than that of one of the remaining products
(at a significance level α = 0.05). The differences are found
significant excepting only for two cases of e2 against GLDAS-
CLS over the polar climate and the unvegetated regions.
Although SMAP generally outperforms SMOS-IC across the
climate and land cover classes, their absolute differences are not

as notable as the considerable differences in their occupied ratios
presented in Figure 2. While SMOS-IC shows a competitive
performance with SMAP, algorithmic improvements and better
land surface parameterization can further improve performances.
As summarized in Table 1, the most important difference
between the SMAP (SCA-V, one polarization, and one incidence
angle) and SMOS-IC (V2, multi-angular, and dual-polarization)
algorithms is that while SMAP needs external NDVI/LAI
derived VWC to estimate vegetation optical depth, SMOS-IC
simultaneously retrieve soil moisture and vegetation optical
depth based on observations without ancillary data. In addition
to this, there are differences between the land surface parameters
and the data source for calculating the effective soil temperature.
Therefore, sensitivity analyses based on the differences can
provide a step to improve the performance.

Both metrics of SMOS-IC are generally better than those
for SMOS and GLDAS-CLS, and SMOS shows mostly lower
performances than the others across the climate and land cover
classes. It is notable the superiority of SMOS-IC compared
to SMOS over the overall conditions, which results from the
algorithmic improvements in SMOS-IC (Fernandez-Moran
et al., 2017; Wigneron et al., 2021). The SMOS-IC algorithm
considers pixels as homogeneous without using uncertain
ancillary datasets, uses calibrated values of scattering albedo and
roughness parameters, and does not rely on MODIS vegetation
product for initializing the vegetation optical depth. The new
version algorithm (V2) achieves further improvements in
vegetation optical depth initialization; data filtering; application
of a higher-order radiative transfer modeling; development of
a multi-temporal approach considering temporally slowly
changing vegetation. GLDAS-CLS outperforms SMOS
overall and even shows similar levels of e2 with SMOS-IC
over the polar climate and the unvegetated regions. The
performance degradation of the satellite-derived products over
the unvegetated areas which is partially overlapped with arid
and semi-arid regions is notable. Several previous studies (Su
et al., 2011; Ma et al., 2019) have reported the shortcomings of
satellite-based soil moisture retrievals over sparsely vegetated
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FIGURE 3 | Box plots representing error variances e2 (Top) and squared Pearson correlation coefficients ρ2 (Bottom) of SMAP (red), SMOS-IC (green), SMOS (blue),

and GLDAS-CLS (white), conditioned by five climate (left), and six land cover classes (right).

FIGURE 4 | Bar charts showing global occupied ratios in percentages of SMAP (red), SMOS-IC (green), SMOS (blue), and GLDAS-CLS (white) presenting the lowest

error variances e2 (Top) and the highest squared Pearson correlation coefficients ρ2 (Bottom) for each climate or land cover class.

regions. Su et al. (2011) showed increased uncertainty levels
of global coarse resolution soil moisture products through
comparisons with soil moisture data from the Tibetan Plateau
observatory. Ma et al. (2019) presented poor performances of
satellite-derived soil moisture data against in situ measurements

collected from arid regions, especially over arid-desert-cold
areas. O’Neill et al. (2016) reported that soil temperature
profiles can be non-uniformly formed in arid areas based
on their preliminary results, which could lead soil moisture
retrieval issues.
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The bar charts in Figure 4 present global occupied ratios (%)
for both metrics of the three L-band products as well as GLDAS-
CLS to provide a different perspective on the performance
results obtained. Here, the occupation ratio (%) is defined as the
proportion of the products presenting the lowest error variances
e2 (top) and the highest squared Pearson correlation coefficients
ρ2 (bottom) for each climate or land cover class. While SMAP
is generally excellent across the climate and land cover classes,
SMAP shows considerable performance degradation compared
to others over unvegetated areas, partially including arid and
semi-arid regions. GLDAS-CLS shows a similar functioning with
SMAP, and SMOS rather shows better performances compared
to itself for other land cover classes. A possible reason for the
degradation of SMAP over arid regions is the way to compute
the effective soil temperature (Teff ), considering the non-uniform
soil temperature profiles especially in arid areas (O’Neill et al.,
2016). As summarized in Table 1, the three retrieval algorithms
are based on Choudhury scheme (Choudhury et al., 1982) in
common, but use different parameters and ancillary datasets
(sources and depths) for the calculation of Teff . Particularly,
SMAP uses 0.246 of the C parameter suggested by Choudhury
et al. (1982), but SMOS-IC/SMOS use C varied by soil moisture
and soil type which could be a hint to reduce the performance
degradation of SMAP over unvegetated regions.

SUMMARY AND CONCLUSIONS

As remote sensing technology advances, the hydrological
application of satellite-derived soil moisture data is increasing.
In particular, the superiority of passive L-band products stands
out compared to products derived from other microwave bands.
Nevertheless, there is little effort for intercomparing existing
L-band soil moisture products through a large-scale validation
technique such as triple collocation. In this regard, this study
compared three passive L-band derived soil moisture datasets,
SMAP, SMOS-IC, and SMOS at a global scale through triple
collocation analyses, aiming to identify strengths, and weaknesses
inherent in each product.

The key findings of the study are as follows.

1. Considerable improvements in SMOS-IC are observed
compared to SMOS—confirming the positive contribution of
retrieval algorithm improvement for the SMOS mission.

2. SMAP generally outperforms the other products over the
globe, being followed by SMOS-IC and SMOS in that order.

3. Despite the superiority of SMAP, we note that SMOS-IC
supplements the weakness of SMAP over some regions
including east of North America, South America, western
Africa, northern China, and central Australia.

The findings presented here show that strengths and weaknesses
of the three L-band soil moisture products in varied climate
and land cover regions across the globe. From the results
presented here, one could conclude that a merging of SMAP and
SMOS-IC would result in improved soil moisture estimation at
the global scale.

Note that we were not able to estimate the error covariances
of the studied products due to the inherent limitations of
dependence across the three separate triplets to be used in TCA.
The improvement in the merged data (i.e., minimization of
the mean squared error) results from complementarity in their
retrieval algorithms, sensors, and so on. This complementarity
is explicitly reflected in the merging process by the error
covariance matrix consisting of error variances (diagonal) and
error covariances (off-diagonal) (Timmermann, 2006). While
only the error variances with or without TC have been popularly
used for merging various datasets as the next best thing (Clemen
and Winkler, 1986; Gruber et al., 2017), Kim S. et al. (2020)
demonstrated that data merging results considering the error
covariances are superior than those for cases that do not consider
it. Recent advances in TC affiliates could allow us to estimate the
error covariances. For example, Gruber et al. (2016a) introduced
the quadruple collocation (QC) that used a data quadruple to
estimate the error covariances by relaxing the assumption of error
independence among the datasets. Dong et al. (2020) proposed
an extended double instrumental variable (EIVD)method, which
needs only two independent products for replicating QC. Besides,
it is notable that Wu et al. (2021) proposed a dynamic TC
scheme in which time-varying error variances can be estimated
through temporally moving windows. The time-varying error
variances can be incorporated into a temporal dynamic setting
of data merging for better merging results (Coulson and Robins,
1993; Chowdhury and Sharma, 2011). Aside from the purpose
of merging datasets, the knowledge of error covariance is also
useful for improving error estimation. Yilmaz and Crow (2014)
pointed out that ignoring the error covariances in TC can
underestimate errors.

Lastly, it should also be acknowledged that the validation
results here can be further classified with more diverse static and
dynamic retrieval conditions. For example, Zhang et al. (2019)
carried out a multidimensional analysis of the performance
of SMAP regulated under static conditions (climate, soil
properties, and land cover), and dynamic properties (soil wetting,
vegetation density, and surface temperature). This can allow
us to view soil moisture products from different angles and
provide data users with further insights into improvements
and guidance.
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APPENDIX

Acronym/abbreviation Full name

AMSR2 Advanced Microwave Scanning Radiometer 2
AMSR-E Advanced Microwave Scanning Radiometer for the Earth Observing System
ASCAT Advanced Scatterometers
CATDS-PDS Centre Aval de Traitement des Données SMOS-Production & Dissemination Center
CESBIO Centre d’Etudes Spatiales de la Biosphère
ERS European Remote Sensing
GEOS-5 Goddard Earth Observing System Model, Version 5
GLDAS-CLS Global Land Data Assimilation System Catchment Land Surface Model
GMAO Global Modeling and Assimilation Office
IGBP International Geosphere–Biosphere Programme
INRA Institut National de la Recherche Agronomique
LAI Leaf Area Index
L-MEB L-band Microwave Emission of the Biosphere
LPRM Land Parameter Retrieval Model
MetOp Meteorological Operational satellite
MODIS Moderate Resolution Spectroradiometer
SAR Synthetic Aperture Radar
SCAT Scatterometer
SMAP Soil Moisture Active Passive
SMMR Scanning Multichannel Microwave Radiometer
SMOS Soil Moisture and Ocean Salinity
SMOS-IC Soil Moisture Ocean Salinity developed by INRA and CESBIO
VOD Vegetation Optical Depth
VWC Vegetation Water Content

Figure A1 | Global rank maps showing soil moisture datasets, SMAP (red), SMOS-IC (green), and ASCAT (cyan) presenting the lowest error variances e2 (Left) and

the highest squared Pearson correlation coefficients ρ2 (Right). Here, the results of ASCAT are represented as averages of the results from the three data triplets, and

the numerical values in parentheses represent proportions in percentages that the three soil moisture datasets show the lowest (highest) e2 (ρ2 ). Here the gray

background on land indicates regions masked by the data preprocessing described in section Data.
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