
1. Introduction
Climate change has noticeably altered extreme precipitation (EP) events, impacting human life and endangering 
built infrastructure around the world (IPCC, 2021; Sih et al., 2011). Many studies report increase in EP globally or 
regionally for much of the last century (Alexander et al., 2006; Donat et al., 2013, 2016; Sun et al., 2021), with EP 
projected to become more severe and frequent as temperatures rises with global warming (Bao et al., 2017; Prein 
et al., 2017; Sillmann et al., 2013; Westra et al., 2014). Increasing temperatures and EP also affect the estimation 
of design extremes such as intensity-frequency-duration relationships (Sharma et al., 2021) and rarer extremes 
including the probable maximum precipitation (PMP; Kunkel et al., 2013). Existing infrastructure, with designs 
based on past EP patterns, do not appear to be effective any longer (Chester et al., 2020; Wright et al., 2019), 
especially when considering recent severe floods in countries around the world (Syvitski & Brakenridge, 2013; 
Worawiwat et al., 2021; World Bank, 2012). In particular, recent European floods in 2021 were the result of a 
large-scale storm event that first impacted the United Kingdom then advanced to several countries in central 
Europe, causing more than 200 casualties and more than 2.5 billion euros of property damage (BBC,  2021; 

Abstract The relationship between extreme precipitation (EP) and precipitable water (W) is useful to 
assess design extremes and speculate on their expected changes with rising global temperatures. This study 
investigates the relationship between daily and longer-duration EP and corresponding W at a global scale by 
analyzing remote-sensed and reanalysis data sets from 2003 to 2019. An assessment of the consistency in the 
temporal trend across various W data sets reveals a consistent statistically significant upward trend during the 
period. This upward trend, while predominant worldwide, is especially significant over tropical land regions. 
W is found to generally be positively correlated with surface (dew point) temperature, suggesting a rise in 
temperature will cause a greater W over time. To assess whether EPs occur coincident with extreme W, the 
Concurrent Extremes Index (CEI) is proposed, which compares the cumulative distribution functions between 
the two variables and assumes a value of unity if ranks of the EP series are identical to that of the coincident W 
series, and zero with no correspondence. For EP (defined as the five largest 1-day events per year on average), a 
high CEI is pronounced across the tropics, except for rainforests. The W-EP relationship is noticeably weakened 
in nontropics, except the inland regions of North America and East Asia. An assessment indicates that as the 
duration of the EP becomes longer, the influence of W on EP decreases. However, the contrast in the W-EP 
relationship between the tropics and nontropics is found to become more pronounced as longer-duration EPs are 
considered.

Plain Language Summary How a rise in temperature will affect extreme precipitation becomes an 
important question as we try and adapt existing infrastructure and build new infrastructure to withstand extreme 
events of the future. This study investigated the relationship between extreme precipitation (EP), atmospheric 
precipitable water (W), and temperature using 17 years of global daily data. We first examined the temporal 
trend of W as well as its correlation with temperature to identify changes that can be expected into the future. 
The results showed that, across the world, W consistently trends upwards and exhibits a strong correlation 
with temperature, this being particularly so over tropical land areas. An investigation into the relationship 
between EP and coincident W suggests the relationship becomes stronger in the tropics, especially when 
daily durations are considered, suggesting the increase in W over time can be expected to lead to more intense 
extreme precipitation events of daily or shorter durations. Longer-duration events and colder latitudes (outside 
of the tropics) exhibit a weaker relationship, suggesting the increase in W expected with time may have reduced 
impacts on nontropical extreme precipitation events.
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Cornwall, 2021). China has also experienced severe country-wide flooding in 2020 and 2021, resulting in a tre-
mendous toll on human life and property (Guo et al., 2020). In the face of such threatening realities, it is essential 
to understand future changes in EP due to climate change and reasonably reflect the changes in various policies 
and design codes (Wasko et al., 2021).

Future changes in EP are usually projected using General Circulation Models (GCMs). GCMs represent the 
physical processes in the global climate system, allowing simulation of the response to increasing greenhouse 
gas concentrations (i.e., increasing temperature). Many studies based on GCMs (often suitably downscaled to 
finer spatial resolutions) have noted that projected increases to EP in tropical regions are more severe than those 
in other regions, but with greater uncertainty. For example, using 18 climate model-derived simulations from 
the World Climate Research Program's (WCRP's) Coupled Model Intercomparison Project Phase 3 (CMIP3) ar-
chive, O’Gorman (2012) showed that the tropical sensitivity (%/K) of the 99.9th percentile of daily precipitation 
is double that of the extratropics. However, O'Gorman and Schneider (2009), assessing the 99.9th percentile of 
daily precipitation under moderate greenhouse conditions, showed simulations over the tropics are not consistent 
across climate models, recommending improvements in characterizing upward velocities in the climate models 
for better EP predictions.

More recently, using CMIP5 simulations, Kharin et al. (2013) also showed greater EP sensitivities with tempera-
ture over the tropics than the subtropics. EP was projected to be more frequent, exhibiting a 6–20%/K sensitivity 
with global temperature in the tropics, but again with greater uncertainty than the sensitivities in the subtropics. 
Correspondingly, Kim et al. (2020) showed that daily EP projections from 45 CMIP5 model outputs consisting 
of various models, ensembles, and emission scenarios are highly uncertain over the tropics. In particular, the 
greatest variability in EP is observed across models rather than across ensembles or scenarios, and the relative 
uncertainty normalized by the regional precipitation amount is greatest in dry regions. Kunkel et al. (2013) found 
significant increases in average and maximum water vapor concentrations in the seven CMIP5 simulations, sug-
gesting that rare precipitation extremes up to the PMP may increase in the future. Indeed, Prein et al. (2017) found 
that hourly EP increases with temperature in moist, energy-limited environments, but found sharp decreases in 
dry, moisture-limited environments. It has hence been suggested that the dynamic contribution to EP plays an 
important role in reducing uncertainty in future projections of regional extremes (Pfahl et al., 2017).

An alternative to relying on GCMs for EP projection is to use the principle of rare event simulation where co-
variates such as surface air temperature (SAT), dew point temperature (DPT), or integrated water vapor (or total 
precipitable water, W) are projected and used to derive the EP instead of computational expensive alternatives 
involving direct samples of EPs (Roderick et al., 2020). The EP projections use sensitivities, correlations, or joint 
likelihoods between EPs and relevant causative variables (covariates) the relationship for which can be estab-
lished using historical data. The temperature-variable sensitivity, usually expressed as %/K, is also called “scal-
ing,” often based on the Clausius-Clapeyron relation of 6–7%/K (i.e., CC scaling) for global-mean water vapor. 
Such a scaling approach to EP projection has been the basis of many studies at various time scales with increasing 
temperature and found to perform similar to climate model projections of EP (Geert Lenderink & Attema, 2015; 
Manola et al., 2018). An added factor that makes such studies attractive is the relatively high stability GCMs 
exhibit for the covariates typically used (SAT, W), when compared to directly sampled EP events (Eghdamirad 
et al., 2017; Johnson & Sharma, 2009; Kim et al., 2020).

Scaling studies generally use SAT to examine the relationship between EP and temperature. For example, Utsumi 
et al. (2011) analyzed global in-situ daily precipitation and SAT and found that the EP increases at high latitudes 
but decreases in the tropics with increasing SAT, which is consistent with Wasko et al. (2016) who used remotely 
sensed precipitation and SAT. Ali and Mishra (2017) found that the negative scaling between EP and SAT in 
India becomes positive when DPT is used instead and suggesting DPT is more linked to EP than SAT (Barbero 
et al., 2018; Lenderink et al., 2011). Similarly, Wasko et al. (2018) found stronger associations of DPT with EP 
as compared to SAT using in-situ data across Australia. Zhang et al. (2019) also found strong negative scaling 
between daily EPs and SAT in the tropics, deducing the reason as limitations in moisture availability under the 
high-temperature bands, and regarded DPT as a better measure for estimating the EP sensitivity. Indeed, a global 
study using DPT as a scaling covariate found more positive scaling when DPT was used as opposed to SAT, with 
even more positive scaling once temperature seasonality is accounted for Ali et al. (2018). However, recent stud-
ies suggest that the negative scaling in the tropics may be due to a limited consideration for subdaily temperature 
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variations resulting from precipitation, with positive scaling obtained over the tropics when subdaily SAT prior 
to storm events is used as a covariate (Visser et al., 2020).

Although less studied, probably due to limited observations in space and time, a promising covariate for project-
ing EP is the integrated water vapor or total precipitable water (W). Here, W is generally defined as the column 
of integrated water vapor from land surface elevation to the top of the troposphere. Using W for EP projections is 
advantageous for the following reasons. First, W exhibits a distinct dependence on temperature in general, making 
it an important attribute of climate change (Fujita & Sato, 2017; Ho et al., 2018; Kunkel et al., 2020a; Mears 
et al., 2007, 2018; Nayak & Takemi, 2019; O’Gorman & Muller, 2010; Roman et al., 2015). Second, unlike pre-
cipitation estimation, W estimated using satellites and models (i.e., reanalyzes) agrees well with radiosonde-based 
observations (Bock et al., 2005; Jiang et al., 2019; Li & Long, 2020; Shi et al., 2018; Wang et al., 2017). Finally, 
and most importantly, W has been regarded as a potential predictor for EP in both data and model outputs due to 
its stronger correlation with rainfall than SAT or DPT alone (Roderick et al., 2020).

2. Background
Atmospheric mass balance (Su & Smith, 2021) can be expressed as the temporal change of total precipitable 
water

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐸𝐸 − 𝑃𝑃 − ∇ ⋅𝑄𝑄 (1)

where W: total precipitable water; t: time; E: evaporation; P: precipitation; Q: water vapor convergence comput-
ed as the convergence of zonal and meridional water vapor transport vector, i.e., Q = (Qx, Qy); and ∇⋅Q is the 
combined magnitude of Q.

Given extreme precipitation typically dominates the other flux terms in 1, many attempts have been made to link 
W to rare to probable maximum precipitation (PMP) events as the basis for risk assessment for existing and new 
infrastructure. The PMP is defined as “the greatest accumulation of precipitation for a given duration meteor-
ologically possible for a design watershed or a given storm area at a particular location at a particular time of 
year” (WMO, 2009). In estimating the PMP the historically observed EP is maximized based on the ratio of the 
historically observed maximum W and the W corresponding to the historical EP (Kunkel et al., 2013). In other 
words, a linear relationship is assumed between EP and W, with the PMP ascertained as the EP that could occur 
were W at its historical maximum. Change in W as a result of global warming hence has direct implications on 
the estimated PMP. Based on this premise, Kunkel et al. (2013) assessed several CMIP5 GCM simulations under 
the most severe greenhouse gas emission scenarios and projected that W will increase by at least 20% globally in 
the 21st century, and concluded that the PMP will similarly increase.

While several continental-scale studies agree that W increases with increasing temperature (or climate change; 
Bao et al., 2017; Kunkel et al., 2020b; Roderick et al., 2019; Zhang et al., 2013), there are various arguments as 
to whether an increase in W leads to an increase in EP over the different continental regions. For example, Zhang 
et al. (2013) found a significant upward trend in W especially in summer over the Tibetan Plateau, but no sig-
nificant increase in precipitation. Using gauge rainfall observations and remotely sensed integrated water vapor 
(i.e., W), Roderick et al. (2019) found a strong positive correlation between W and EP across Australia, including 
the tropical regions in the north. However, Bao et al. (2017), using regional climate model simulations across 
Australia, found that although daily EP (99th percentile) projections are highly correlated to W, they increase at 
a greater rate than could be attributed to the increase in W alone. Kunkel et al. (2020a) suggested that increasing 
W contributes to increases in EP across the contiguous United States, based on observing statistically significant 
upward trends of EP that are concurrent with those of W. Indeed Kunkel et al. (2020b) also found positive correla-
tions between W and EP at over a third of over 3,000 observatories in the United States, and found that, in general, 
EP is linearly proportional to W, but nonlinear at both extremes of the W distribution. Hence, they concluded that 
W is the key limiting factor in the most intense EPs.

However, a global picture of the relationship between W and EP does not exist. Moreover, with the advent of 
many new remote-sensed W observations, there is no comprehensive evaluation of the W-EP relationship be-
tween the alternate data products that have been developed to characterize W. Using 17-year of data from 2003 to 
2019, this study aims to provide a comprehensive evaluation of the W-EP relation building on the continent-scale 
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studies presented above (Bao et al., 2017; Kunkel et al., 2020a, 2020b; Roderick et al., 2019, 2020). Using a 
simple but consistent approach at a global scale, we answer three primary questions:

1.  How is W impacted by climate change?
2.  Does EP correspond to coincident W extremes, and whether this correspondence is homogenous in space?
3.  Does this correspondence hold across different durations and thresholds of EP?

To answer Q1, we prove the relevance to climate change by identifying the temporal trend of W along with its 
correlation with temperature, and show that the results are robust by using various remotely sensed and reanalysis 
W data (Section 4.1). Second, to answer Q2 and Q3, we investigate the W-EP relation using spatially distribut-
ed correspondence metrics and assess sensitivity across different rainfall durations and depth thresholds (Sec-
tion 4.2). Lastly, we discuss the implications of our results in the context of climate change projections, outlining 
the impacts that can be expected to unfold to EP into the future.

3. Data and Methods
3.1. Data

This study analyses the relationship between extreme precipitation (EP) and concurrent total precipitable water 
(W) at a global scale with respect to coincident surface air (SAT) and dew point (DPT) temperature informa-
tion. For precipitation, we use the Integrated Multi-satellite Retrievals for the Global Precipitation Measurement 
(GPM IMERG) final product (Huffman et al., 2015). While we select the GPM IMERG final product which 
shows superior performance compared to other products (Beck et al., 2019) without shortening the study period, 
the results need to be considered in the context of performance and uncertainty of the data presented in existing 
evaluation studies (O et al., 2017; Yu et al., 2021). For precipitable water, we focus on the Atmospheric Infrared 
Sounder (AIRS; AIRS Project, 2019), utilizing four additional reanalyzes data sets to check consistency in the 
results, these being the second Modern-Era Retrospective Analysis for Research and Applications (MERRA2; 
Gelaro et  al.,  2017); European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 
(ERA5; Hersbach et al., 2020); the Japanese 55-year Reanalysis (JRA-55) Kobayashi et al. (2015); and the Na-
tional Centers for Environmental Prediction (NCEP; Saha et al., 2010, 2014). The study period is 17 years from 
1 January 2003 to 31 December 2019, which ensures concurrency with the period of AIRS, which is the shortest 
data set used. Along with these, we use the 2-m surface air temperature (SAT) and the 2-m dew point temperature 
(DPT) from ERA5-Land to investigate how P and W are related to both. The details of the data sets are summa-
rized in Table 1.

The following processing has been applied for the data sets. First, all data used for this study are temporally aver-
aged to a daily time step. For AIRS, data gaps between satellite scanning swaths are simultaneously filled by the 
three-dimensional discrete cosine transforms (DCT-PLS) to minimize data loss (Garcia, 2010; Pham et al., 2019; 
Wang et al., 2012). Next, for the trend analysis, we use monthly W data which are computed from the daily, un-
less monthly data were originally provided from the data sources. Lastly, the data products are resampled onto a 
spatial resolution of 1° (∼100 km at the equator) using spatial-averaging resampling.

Data Variable name
Spatial 

resolution Temporal resolution

Total precipitable water (mm) AIRS (V7.0, AIRS-only) Retrieved total precipitable H2O vapor 1° Daily (ascending/descending)

MERRA2 (V5.12.4, M2T1NXINT) Total precipitable water vapor (TQV) 0.5° × 0.625° Hourly

ERA5 (on single levels) Total column water vapor 0.25° Hourly

JRA-55 V6.6.2 Total precipitable water 1.25° Six-hourly

NCEP V1/V2 Total precipitable water 0.312° Six-hourly

Precipitation (mm) GPM IMERG Final V6 Daily accumulated precipitation 0.10° Daily

Temperature (K) ERA5-Land SAT/DPT 2-m temperature/2-m dewpoint temperature 0.25° Hourly

Table 1 
Summary of Data Sets Used in This Study
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3.2. Methods

From the mass balance (Equation 1), we focus on W and P and examine the relationship between temperature 
(T) and W and P to evaluate the expected changes associated with rising temperatures. In this context, we first 
investigate the temporal trend of W and its correlation with temperature (Section 3.2.1). After that, we measure 
the correspondence of W with P, especially EP (Section 3.2.2), using the methods described below.

3.2.1. Trend of W and W-T Relationship

To see if the monthly W data have increasing or decreasing trends over the study period, we utilize the Mann-Ken-
dall (MK) test (Hirsch et al., 1982; Kendall, 1948; Mann, 1945). The MK test rejects the null hypothesis (H0) or 
accepts the alternative one (H1) based on a two-sided test. Here, H0: a data sample (x1…xn) consists of independ-
ent and identically distributed (IID) random variables; H1: xi and xj are not IID for all i, j (i ≠ j). For this, the test 
statistic S is defined as

S =
�−1
∑

�=1

�
∑

�=�+1
sgn(x� − x�)

where,

gn(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if � > 0

0 if � = 0

−1 if � < 0

 (2)

Considering the seasonality in W (Jiang et  al.,  2019), we adopt the Seasonal Kendall (SK) test (Helsel & 
Hirsch, 1992) using the Theil-Sen slopes (Sen, 1968; Theil, 1992). When the number of data points n > 20, the 
upper (U) and lower (L) confidence limits for the Theil-Sen slopes are given as (Equation 3), respectively (Helsel 
& Hirsch, 1992)

U =

𝑁𝑁 +𝑍𝑍𝛼𝛼∕2

√

𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)

18

2
+ 1

L =

𝑁𝑁 −𝑍𝑍𝛼𝛼∕2

√

𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)

18

2

 (3)

where N = n(n − 1)/2 (number of pairwise slopes); Zα/2: critical value having a p-value corresponding to the half 
of a significance level α (i.e., α/2), obtainable from a standard normal distribution table.

In the SK test, the overall statistic Sk reflecting the seasonality is calculated as

S𝑘𝑘 =

m
∑

𝑠𝑠=1

S𝑠𝑠 (4)

where Ss is the Kendall's S statistic for each season (s = 1, …, m). In this study, each month in the study period is 
regarded as each season (i.e., m = 12).

When the product of the total number of seasons and the number of years in the study period exceeds 25, the 
distribution of Sk approaches a normal distribution (Hirsch et al., 1982). Then the standard normal deviate ZSk is 
estimated as Equation 5, and is evaluated accordingly. Here, the expected value of Sk equals 0 and the standard 
deviation is σSk. In the two-sided SK test, given the critical value Zc at a probability of exceedance of α/2, H0 is 
rejected when |ZSk| > Zc, for which we consistently use α = 0.05 in this study
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ZS� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S� − 1
�S�

if S� > 0

0 if S� = 0

S� + 1
�S�

if S� < 0

where

�S�
2 =

m
∑

�=1

n�(n�−1)(2n�+5)
18

� = number of data in season �

 (5)

3.2.2. Data Concurrence Index

Once the Theil-Sen slopes are estimated for each monthly W data set, the concurrency in the results are evaluated 
based on the Data Concurrence Index (DCI; Anabalón & Sharma, 2017; Kim et al., 2021) defined as

DCI =
1

N

N
∑

𝑖𝑖=1

h𝑖𝑖T𝑖𝑖

|T𝑖𝑖|

 (6)

where N: number of data sets used for the trend analysis (i.e., N = 5); Ti: trend magnitude; hi: 1 for significant 
trend at a significance level (α = 0.05) otherwise 0 for ith data set. That is, the closer a DCI is to 1 (−1), the more 
concurrently the data sets show significant upward (downward) trends. On the other hand, a DCI close to zero 
means that the trends are not statistically significant or are inconsistent across the data sets.

3.2.3. Concurrent Extremes Index (CEI)

In this study, we define EPs as the five largest 1-day events per year on average. To sample these events, we use 
the 85th largest value (17 years × five 1-day events) as the threshold for all daily precipitation values in each grid 
cell. By applying the threshold for each year, five 1-day events are selected in each year on average. A minimum 
interval of 4 days between two events is applied to help ensure that the events selected are independent. For the 
sensitivity analysis, we also consider samples based on 5-day event intervals and/or 10 events per year.

The W-P relation is first investigated by the Pearson correlation (R) between overall P (or EP) and concurrent W. 
In contrast to the W-T relationship (presented in Section 4) we find that the W-EP relationship differs regionally. 
That is, in some regions EP increases with W, but not in others. A measure of similarity between EPs and coinci-
dent W is proposed. This measure, termed the Concurrent Extremes Index (CEI), can be expressed as

CEI = 1 −
𝐸𝐸[𝐹𝐹𝑃𝑃 (𝐸𝐸𝑃𝑃 ) − 𝐹𝐹𝑊𝑊 (𝑊𝑊 |𝐸𝐸𝑃𝑃 )]

𝐸𝐸[𝐹𝐹𝑃𝑃 (𝐸𝐸𝑃𝑃 ) − 0.5]
 (7)

where FX(⋅) denotes the cumulative distribution function (CDF) for variable X and E(⋅) represents the expectation 
operator. The CEI assesses the expected difference in the cumulative distribution function (CDF) of EP and co-
incident W, under the premise that if the EPs occur coincident with extreme W, CEI will be unity, while if there 
is no relation between the two variables (FW(W|EP) = 0.5), it will equal zero.

While metrics such as rank correlation have the advantage of being less sensitive to outliers, their direct use here 
is not possible as they use the complete rank distribution of the data. The CEI, on the other hand, focusses just 
on the extreme events, while still having the intuitiveness of a measure such as the correlation, as it is defined to 
scale from 0 to 1.

3.2.4. Result Interpretation

In order to summarize the analysis results, we use the 33 regions used for the Intergovernmental Panel on Cli-
mate Change (IPCC)'s Fifth Assessment Report (AR5; Seneviratne et al., 2012). Here, the 33 AR5 regions are 
composed of 26 Special Report on Climate Extremes (SREX) regions and 7 non-SREX ones. For readers here, 
the original short names of the 33 regions are presented in the caption of Figure 1, and the full names and spatial 
boundaries can be found at https://www.ipcc-data.org/guidelines/pages/ar5_regions.html.

https://www.ipcc-data.org/guidelines/pages/ar5_regions.html
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For simplicity, the W-EP relationship calculated using the CEI (Equation 7) is clustered into several regions 
(Figure 4b) by using an adaptive K-means clustering algorithm (Dixit, 2021). The adaptive K-means clustering 
algorithm does not need to specify the number of clusters. Instead, the cluster centroid is found sequentially, 
starting with the mean of all data points as the initial cluster centroid, iteratively excluding data points whose 
Euclidean distance to the cluster centroid is greater than the mean distance, and updating the cluster centroid with 
the mean of the remaining data points.

4. Results
We first present the W trend and the W-T relationship (Section 4.1), followed 
by the W-P relationship in Section 4.2. The results presented are based on 
the AIRS data set that has been widely used in previous studies and showed 
good performance compared to reanalyzes and radiosonde observations 
(Jiang et al., 2019; Roderick et al., 2019, 2020; Wang et al., 2017). The other 
W data sets have been limited to evaluating concurrency in the results based 
on the DCI and other measures. Hence, unless otherwise indicated, the W 
here is from AIRS.

4.1. W Trends and W-T Relations

We begin by analyzing the monthly global-mean W time series to assess 
trends among the data sets in Table  1 and present the results in Table  2. 
All data for 17  years from 2003 to 2019 show an average value of about 

Figure 1. Results of monthly W trend analysis across 17 years from 2003 to 2019. (a) Monthly W trend; (b) Data 
Concurrence Index (DCI) for monthly W trends using five monthly W data sets; (c) monthly W trend magnitudes (mm/
month/year) in descending order for the 33 IPCC AR5 regions, consisting of 26 SREX and 7 non-SREX regions (marked by 
asterisks). Here, AMZ: Amazon; ENA: East North America; WIO*: West Indian Ocean; SAS: South Asia; EAF: East Africa; 
WAF: West Africa; SEA: Southeast Asia; CAM: Central America/Mexico; SAH: Sahara; CEU: Central Europe; EAS: East 
Asia; CNA: Central North America; NTP*: Pacific Islands region; NEU: North Europe; ARC*: Arctic; MED: South Europe/
Mediterranean; NEB: North-East Brazil; ANT*: Antarctica; SSA: Southeastern South America; ALA: Alaska/N.W. Canada; 
NAS: North Asia; SAU: South Australia/New Zealand; WAS: West Asia; STP*: Southern Topical Pacific; TIB: Tibetan 
Plateau; NAU: North Australia; WSA: West Coast South America; WNA: West North America; CGI: Canada/Greenland/
Iceland; CAR*: small islands regions Caribbean; ETP*: Pacific Islands region; CAS: Central Asia; SAF: Southern Africa.

Data set

Monthly 
mean (mm/

month)

Trend (Sen's 
slope)(mm/
month/year)

Confidence 
interval (95%, 
lower/upper)

Significant 
(α = 0.05)

AIRS 25.3 0.0435 0.0367 0.0498 Yes

MERRA2 24.5 0.0485 0.0412 0.0557 Yes

ERA5 24.3 0.0471 0.0417 0.0532 Yes

JRA-55 25.3 0.0412 0.0340 0.0484 Yes

NCEP 24.7 0.0100 0.0035 0.0168 Yes

Mean 24.8 0.0369 0.0310 0.0432 Yes

Table 2 
Global W Mean and Trend Over 17 Years From January 2003 to December 
2019, Estimated Using Global Monthly W Time Series From Five W Data 
Sets
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24 mm/month and present statistically significant upward trends, although NCEP shows a considerably smaller 
trend magnitude compared to the other data sets.

Although there appears to be a consistency globally between the data sets, it may be expected that the trend will 
vary spatially. Figure 1 presents global maps of the monthly W trend (Figure 1a) and the DCI for the W trends 
estimated from the five monthly W data sets including AIRS (Figure 1b) on a grid cell basis. Figure 1c presents 
boxplots of monthly W trend magnitudes (mm/month/year) for the 33 IPCC AR5 regions. The Pearson correla-
tion (R) between daily W and concurrent SAT (Figure 2a) and DPT (Figure 2b) are also presented.

As depicted in Figure 1a, upward trends are dominant over most tropical land surfaces (±30°) including the 
Florida coastline in the United States, most of the Amazon, Central Africa, India, Southeast Asia Archipelago, 
and Southeast China. The magnitude of the upward trends tends to decrease away from the tropics. On the oth-
er hand, downward (or weakly upward) trends are observed in North America including Greenland, Northern 
Europe, Central and East Asia, the south end of South America, and southern Africa, and central and northern 
Australia. The trends of W over the ocean are mixed, and downward trends are notable in some regions of the 
South Pacific, North Atlantic, and South Indian Oceans. Segmenting the trend magnitudes by the 33 IPCC AR5 
regions (Seneviratne et al., 2012), the results are presented as boxplots in Figure 1c. Regions with positive means 
are a total of 21 on the left, from AMZ (Amazon) to Southeast South America (SSA), and regions with negative 
means are a total of 12 on the right, from SAU (South Australia/New Zealand) to SAF (South Africa). Among 
them, except for the seven non-SREX regions marked by asterisks in the boxplot, the three regions showing the 
largest upward trends are AMZ (Amazon), ENA (East North America), and SAS (South Asia). On the contrary, 
the three regions showing the greatest downward trends are SAF (Southern Africa), CAS (Central Asia), and CGI 
(Canada/Greenland/Iceland).

The spatial pattern of the trends in Figure 1a matches that of DCI in Figure 1b with a strong correspondence 
between data sets over land in the tropics as well as over Europe. Here, regions where two or more of the five 
data sets show upward trends account for 44% of the world (i.e., DCI ≥ 0.4), whereas only 3% of the regions have 
two or more data sets that show downward trends (i.e., DCI ≤ −0.4). Moreover, the difference between the areas 
exhibiting upward and downward trends becomes larger when further considering a DCI of ±0.2: 58% (upward 
trend) and 11% (downward trend). In summary, during the 17-year study period, the dominant worldwide trend in 
monthly W is upward, and this is more pronounced in the tropical regions within ±30°, especially over the land.

The spatial distribution of the Pearson correlation (R) between daily W and both SAT and DPT is shown in 
Figure 2.

As shown in Figure 2a, most regions show positive R, while weak to moderate negative R is observed over land 
in the Amazon, central Africa, and southeast Asia. Roderick et al. (2019) found that increases in SAT (>28°C) 
are not proportional to increases in integrated water vapor in the tropics of northern Australia, which can be ex-
plained by interactions between surface temperature and surface moisture in hot climates. Namely, when a lack 
of surface moisture leads to a high SAT, the conversion of additional radiation into sensible, instead of latent, 
heat is likely to occur. As a result of this chain, high SAT tends to be accompanied by low integrated water vapor. 
Alternatively, as the regions where negative R is observed are strongly associated with the global rainforests such 

Figure 2. Pearson correlation (R) between daily W and temperature across 17 years from 2003 to 2019. (a) R between daily 
W and surface air temperature (SAT); (b) R between daily W and dew point temperature (DPT).
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as the Amazon, Congo, and the Southeast Asian Archipelago (Encyclopaedia Britannica, 2020). Such negative 
correlations may be partially attributed to local cooling due to evapotranspiration (Ellison et al., 2017; Lejeune 
et al., 2015; Li et al., 2015) or precipitation (Bao et al., 2017; Visser et al., 2020). Unlike the case with SAT, the 
relationship between W and DPT shows strong positive R almost universally globally (Figure 2b). These results 
suggest that W is generally positively correlated with SAT and/or DPT across the globe, suggesting that rising 
temperature with climate change may be leading to increases in W.

4.2. W-P Relationship

As mentioned earlier, EP in this study is defined as the five largest 1-day events per year on average (hereafter 
simply referred to as “1D5E”). We begin examining the W-P relationship by presenting the R between overall P 
and W (Figure 3a), and the R between EP and corresponding W (Figure 3b). Hereafter, the former is referred to 
as ROV, and the latter, REP, for brevity. We restrict our analysis data pairs where SAT > 273.15 K and P > 1 mm 
to remove snow events. In addition, we exclude high-latitude regions (outside ±60°) where many data gaps exist 
due to snow/ice surfaces (Huffman et al., 2015). Scatterplots over two regions, northern Germany in Figure 3c 
and northern Australia in Figure 3d, where the W-P relationship differs greatly are also presented.

In contrast to the clear W-T relationship represented by the moderate to strong R between W and SAT(DPT) pre-
sented in Figures 2a and 2b, ROV in Figure 3a shows overall weak to moderate positive magnitudes. Weak negative 
correlations are also observed in some regions including the eastern and western coastal areas of North America, 
North Africa, the northern part of the Arabian Peninsula, and the inland regions of Central Asia. Even if the cor-
relation is constrained to considering only EP as shown in Figure 3b, the W-P relationship does not appear to be 
consistent spatially. REP in Figure 3b exhibits moderately positive values in some regions including parts of North 
Africa and Australia, but in many regions, the EP and W do not appear to be correlated.

The scatter plots shown in Figures 3c and 3d suggest that there is a weak relationship between P and W, though 
this portrayal of correlation ignores the conditional nature of the dependence involved. In northern Germany 
(Figure 3c), the W values corresponding to the EPs are widely scattered suggesting that a large P can occur with 
any value of W, whereas in northern Australia (Figure 3d), the W values for the EPs tend to be concentrated 
over a narrow range of high values. That is, in determining the strength of the relationship between W and P it is 

Figure 3. W-P relationship, presenting (a) R between overall P and W (i.e., ROV); (b) R between EP (1D5E) and 
corresponding W (i.e., REP); (c) and (d) W-P scatterplots for two locations, northern Germany, and northern Australia, 
respectively, marked as red crosses on (a). Here, the units for both W and P is “mm/day”.
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important to quantify the conditional dependence of W on EP, not the simple linear correlation between the two 
variables. Taking this into account, we calculate the Concurrent Extremes Index (CEI) corresponding to EPs. 
For example, for northern Germany belonging to CEU (Central Europe) the median CEI is 0.63 representing less 
relevance of W to EP. Alternatively, for northern Australia, part of NAU (North Australia), the median CEI is 
0.87 indicating a strong relevance of W to EP (Figure 4c).

Figure 4 presents the results of the global CEI analysis. As shown in Figure 4a, the strength of the W-EP rela-
tionship as represented by CEI is strongest across the tropical regions (within ±30°). However, exceptions are ob-
served over mountainous and basin landforms including the northern Andes in South America, the Congo Basin 
in central Africa, and the Southeast Asian Archipelago. These areas in the tropics match the tropical rainforest 
climate type (Beck et al., 2018), with high mean annual precipitation and high mean apportionment entropy (AE; 
Konapala et al., 2020)—the higher the AE value is, the less variable the monthly precipitation or evaporation is. 
The strength of the W-EP relationship is noticeably reduced in regions outside ±30°, including most of Europe 
and central Asia in the northern hemisphere and the southern tip of South Africa, southern Australia, and New 
Zealand in the southern hemisphere. Here, the inland regions of North America and East Asia are exceptions. The 
regional differences in the strength of the W-EP relationship as indicated by the CEI values are visualized through 
the adaptive K-means clustering algorithm (Dixit, 2021) and presented in Figure 4b. This clustering helps to 
identify areas where EP is more (or less) related to extreme W, with stronger W-EP associations being found in 
Cluster 1 and weaker associations in Clusters 2 and 3. Aggregating the regional results in Figures 4a and 4b by the 
AR5 regions, the distributions of CEI are presented as the boxplot in Figure 4c. Counting the most frequent clus-
ter numbers in each region, a total of eight regions from CAR (small islands regions Caribbean) to SAS (South 
Asia) belong to Cluster 1 (i.e., high W-EP relevance), and the remaining 23 regions from NTP (Pacific Islands 
region) to CAS (Central Asia) are included in Clusters 2 or 3 (i.e., low W-EP relevance). Among the eight regions 
included in Cluster 1, as shown in Figure 1c, upward trends of W are observed in five of these regions with CAR 
(small islands regions Caribbean), NAU (North Australia), and TIB (Tibetan Plateau) being exceptions. In par-
ticular, the three regions of WIO (West Indian Ocean), SAS (South Asia), and EAF (East Africa) have consider-
ably increasing W and high CEIs, and in general, EPs are expected to greatly increase with increasing W in these 
regions, as compared to the other regions. Also, when we perform a CEI analysis considering only rainy days, 

Figure 4. Results of Concurrent Extremes Index (CEI) analysis, presenting (a) spatial distributions of CEI for EP (1D5E), 
(b) three global clusters presenting the W-EP relevance segmented by CEI magnitudes, and (c) CEI for 1D5E in descending 
order for IPCC's AR5 regions. Note ALA (Alaska/N.W. Canada) and ARC* (Arctic) are not included.
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the spatial pattern of CEI is similar to Figure 4a. While the overall CEI value is 0–0.1 lower than when all data 
are used, the key conclusions of this study about the regional differences and patterns of CEI remain unchanged.

Based on this framework, we next conduct a sensitivity analysis of the W-EP relationship for various durations of 
precipitation accumulation (D) and the average number of events per year (N). The baseline is the 1D5E that we 
have used previously, and the three different conditions for the sensitivity analysis are 5D5E, 1D10E, and 5D10E 
(i.e., five largest 5-day events per year on average, and the 10 largest 1-day and 5-day events). CEI maps for the 
three conditions and boxplots for comparison are presented in Figure 5.

Examining Figures 5a and 5d, the 5D5E spatial pattern and distribution of CEI are similar to those of 1D5E. 
However, for this longer duration, there is a greater divergence (spread) in the CEI values, i.e., regions that had 
a low CEI for 1D5E are now smaller, and regions that had a high CEI are now greater. For 1D10E, the tropical 
(within ±30°) and nontropical (above ±30°) regions differ less (Figure 5b), albeit with a similar spatial pattern to 
1D5E and 5D5E. As shown in Figure 5d, while the second and third quartiles of CEI for 1D10E are lower, the first 
quartile is similar or a bit lower than those of 1D5E and 5D5E. That is, the EP for 1D10E becomes less relevant 
to W (low CEI), and the regional differences in the W-EP relationship over the tropical and nontropical regions 
is less (narrower interquartile range). In Figure 5c, the spatial pattern of 5D10E is similar to that of 1D10E, but 
it is observed that the regional differences in the W-EP relationship over the tropical and nontropical regions are 
more contrasting (wider interquartile range). Furthermore, the interquartile range of 5D10E is lowest among the 
four cases as presented in Figure 5d. These results suggest that EP is more strongly associated with W (i.e., higher 
CEI for EPs) in the tropics, and the regional differences in the W-EP relationship are more contrasting (i.e., wide 
interquartile range) as D increases, with the strength of the W-EP relationship weaker (lower CEI) as E increases.

5. Discussion and Implications
The atmospheric mass balance (Equation 1) is the result of complex dynamic and thermodynamic interactions 
of atmospheric components (Seager et al., 2010; Su & Smith, 2021). Based on the various data sets considered, 
this study investigated how W and P, two elements of the atmospheric mass balance, are connected and how 
they change with rising temperatures. In addition, based on this relationship, we investigated the evidence for 

Figure 5. Results of sensitivity analysis for Concurrent Extremes Index (CEI) with various days of precipitation cumulation 
(D) and the average number of events per year (N). CEI maps of (a) 5D5E, (b) 1D10E, and (c) 5D10E. (d) Boxplots for 
comparing the baseline (1D5E) and the three conditions.
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informing the projection of EP to future temperature increases. To this end, we found positive correlations be-
tween W and SAT (DPT) and increasing trends of W in many regions of the world, suggesting that W is likely to 
increase under further increases in temperature with climate change. We also found that the strength of the W-EP 
relationship (as represented by the CEI for EPs) is strongest in the tropics, where the greatest uncertainty exists 
in EP projection. This suggests the W-EP relationship could potentially be used to improve EP projections. The 
regional differences in the W-EP relationship mean that the direct contribution of W to EP differs with climate, 
suggesting that in the regions where the W-EP relationship is weak (i.e., low CEI), it may be necessary to consider 
the interrelationships with other components such as wind and evaporation to develop a stronger W-EP relation-
ship. Based on the results presented here, there are several natural extensions to this work.

The CEI-based W-EP relation could be used to derive simple EP projections, especially in regions where these 
are overwhelmingly high. A conditional relationship between the two variables, as suggested in Roderick 
et al. (2020), can be formulated. This can be used in conjunction with projections of W with temperature or time, 
obtainable from the relationship with temperature (SAT or DPT; Figure 2) or directly projected from GCMs. 
This, or analogous methods, could aid EP projection in high CEI regions, particularly where GCM uncertainty 
of EP projections is the greatest. In this case, instead of estimating EP from W using a simple linear relationship, 
it would be better to estimate EP from the CEI once the CDFs of W and P have been obtained from the GCM 
outputs.

The work could also be extended to different time scales. For example, it has been shown that intermittence of 
P can affect the relationship between P and SAT (and hence W and SAT; Schleiss, 2018; Visser et al., 2020). 
Repeating the work here using subdaily data may allow the findings here to be further generalized to finer time 
scales and to regions that do not exhibit strong relations at the daily time scales considered here. The relatively 
short record length here, though possibly influenced by decadal variability, has been assumed to be indicative of 
climate change. Using data for 20–30 years or longer may provide deeper insights. For example, W trends in the 
early 21st century may be greater than those of the late twentieth century due to the intensification of the global 
warming effect in recent years. For this, however, satellite (observational) data will be insufficient and reanalysis 
products will need to be considered. However, by using this longer data, it may be possible to test how consistent 
the EP projections made using the CEI-based method are with historical data.

The proposed CEI-based projection approach can be also used for investigating the frequency of EPs with rela-
tion to W. That is, it may be possible to interpret and project the EP in terms of return period by examining how 
many EPs above a certain threshold occur each year (or during a specific period) conditional on the concurrent 
value of W. This is especially pertinent as both reanalysis and GCM data sets exhibit greater consistency (reduced 
uncertainty) for variables such as SAT, DPT, or W when compared to the EPs which exhibit greater instability 
(Eghdamirad et al., 2017; Kim et al., 2020).

Finally, while the strong W-EP relevance of tropical and East Asian regions represented by high CEI values raises 
some insights and possible applications, it is necessary to further investigate why high-latitude regions exhibit 
relatively low CEI values. Considering the association of EP with various factors, such as water vapor transport, 
which were not considered in this study, will aid the understanding of EP mechanisms globally.

6. Conclusions
In this study, we investigated the relationship between daily extreme precipitation (EP) and corresponding total 
precipitable water (W) at a global scale by analyzing 17-year of data from 2003 to 2019. For this, we used the 
GPM IMERG final product for P and focused on the satellite-derived AIRS product for W. To confirm the con-
sistency of the results, we also used four W products from reanalyzes, including MERRA2, ERA5, JRA-55, and 
NCEP. Together with this, we examined the relationship between the variables (P and W) and temperatures by 
using the 2-m surface air temperature (SAT) and the 2-m dew point temperature (DPT) from ERA5-Land. This 
study identified the following key findings which answer the three primary questions raised in the background.

 1.  How is W impacted by climate change?

All monthly W data have average values around 24 mm/month and consistently exhibit statistically significant 
upward trends during the 17-year study period. The upward trends are predominant worldwide, with the strongest 
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trends being present in tropical land regions within ±30°. The Pearson cor®ation (R) between daily W and DPT is 
strongly positive across the globe. However, weakly positive to moderately negative R between daily W and SAT 
is observed over the tropical rainforests. This negative correlation can be explained by the limitations of tempera-
ture due to evaporation in hot climates (Roderick et al., 2019), and/or the cooling effect due to local evapotranspi-
ration over tropical rainforests (Ellison et al., 2017; Lejeune et al., 2015; Li et al., 2015). One can thus conclude 
that W can be expected to increase into the future, with increases most notable over tropical land regions.

 2.  Does EP correspond to coincident W extremes, and whether this correspondence is homogenous in space?

We quantified the strength of the W-EP relationship using the Concurrent Extremes Index (CEI)—the higher 
the CEI, the stronger being the W-EP relationship. For EPs defined as the five largest 1-day events per year on 
average (1D5E), high CEI values were found across the tropical regions (within ±30°) with exceptions over the 
tropical rainforest climate. The relevance of W-EP is noticeably reduced in regions outside ±30° except for the 
inland regions of North America and East Asia. We identified five AR5 regions where both increasing W and 
high CEIs are observed, indicative of EPs that are likely to increase under climate change. These are NEB (North-
East Brazil), WIO (West Indian Ocean), EAF (East Africa), SAH (Sahara), and SAS (South Asia). In particular, 
both the tendencies of increasing W and high CEIs are notable in WIO, SAS, and EAF compared to other regions, 
suggesting daily duration EP increases are expected to be most pronounced in these parts of the world.

 3.  Does this correspondence hold across different durations and thresholds of EP?

From a sensitivity analysis of the W-EP relationship across multiple days of precipitation accumulation (D) and 
the average number of events per year (E), EP is consistently identified as more relevant to W in the tropics; the 
regional differences in the W-EP relationship between the tropics and nontropics become greater as D increases, 
and EP tends to be less relevant to W as E increases.

Data Availability Statement
All data used for this study are freely available. GPM IMERG final, AIRS, MERRA2 products are available from 
https://earthdata.nasa.gov/; ERA5 from https://cds.climate.copernicus.eu/cdsapp#!/home; JRA-55 and NCEP 
from https://rda.ucar.edu/.
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